期刊文献+

不可数多个GO-空间乘积的κ-仿紧性

κ-Paracompactness of Product of Uncountable GO-spaces
原文传递
导出
摘要 证明了不可数多个GO-空间的乘积是κ-仿紧空间(<κ-仿紧空间)的充分必要条件,其中κ是正则不可数基数. We proved an equivalent property about product of uncountable GO-spaces being k-paracompact (〈 k- paracompact ).
作者 马利文
出处 《数学的实践与认识》 CSCD 北大核心 2009年第22期161-165,共5页 Mathematics in Practice and Theory
关键词 GO-空间 正则不可数基数 〈k-仿紧 GO-space regular uncountable cardinal 〈k- paracompact
  • 相关文献

参考文献9

  • 1Przymusinski T C. Products of Normal Spaces[M]. in: Handbook of Set Theoretic Topology (ed. by K. Kunen and J.E. Vaughan), Northholland, 1984. 781-826.
  • 2Miwa T, Kemoto N. Linearly ordered extensions of GO-spacesLJ]. Topology and It's Applications, 1993, 54: 133-140.
  • 3Kemoto N. Normality of products of GO-spaces and cardinal[J]. Topology Proceedings, 1993, 18: 133-142.
  • 4Engelking R. General Topology[M]. Poblish Scientific Publishers Warszaw, 1977.
  • 5Kuratowski K, Mostowski A. Set Theory[M]. (PWN-Polish Scientific Publishers, 1996).
  • 6Kemoto N. The Shrinking Property and the F-property in ordered spaces[J]. Fundamenta Mathematice, 1990, 134: 255-261.
  • 7Lutzer DJ. On Generalized Ordered Spaces[M]. in: Disserlalions Math, 1971, 89.
  • 8Erick Van Douwen, David J Lutzer. On the Classification of Stationary Sets[M]. in: Michigan Math J, 1979, 26.
  • 9Erdos P, Hajnal A, Mate A, Rado R. Combinatiorial Set Theory; Partition Relations for Cardinals[M]. Akademiaikiado, Budapest, 1984.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部