不可数多个GO-空间乘积的κ-仿紧性
κ-Paracompactness of Product of Uncountable GO-spaces
摘要
证明了不可数多个GO-空间的乘积是κ-仿紧空间(<κ-仿紧空间)的充分必要条件,其中κ是正则不可数基数.
We proved an equivalent property about product of uncountable GO-spaces being k-paracompact (〈 k- paracompact ).
出处
《数学的实践与认识》
CSCD
北大核心
2009年第22期161-165,共5页
Mathematics in Practice and Theory
参考文献9
-
1Przymusinski T C. Products of Normal Spaces[M]. in: Handbook of Set Theoretic Topology (ed. by K. Kunen and J.E. Vaughan), Northholland, 1984. 781-826.
-
2Miwa T, Kemoto N. Linearly ordered extensions of GO-spacesLJ]. Topology and It's Applications, 1993, 54: 133-140.
-
3Kemoto N. Normality of products of GO-spaces and cardinal[J]. Topology Proceedings, 1993, 18: 133-142.
-
4Engelking R. General Topology[M]. Poblish Scientific Publishers Warszaw, 1977.
-
5Kuratowski K, Mostowski A. Set Theory[M]. (PWN-Polish Scientific Publishers, 1996).
-
6Kemoto N. The Shrinking Property and the F-property in ordered spaces[J]. Fundamenta Mathematice, 1990, 134: 255-261.
-
7Lutzer DJ. On Generalized Ordered Spaces[M]. in: Disserlalions Math, 1971, 89.
-
8Erick Van Douwen, David J Lutzer. On the Classification of Stationary Sets[M]. in: Michigan Math J, 1979, 26.
-
9Erdos P, Hajnal A, Mate A, Rado R. Combinatiorial Set Theory; Partition Relations for Cardinals[M]. Akademiaikiado, Budapest, 1984.
-
1马利文,王尚志.GO-空间乘积的子空间仿紧性的充分必要条件[J].数学的实践与认识,2007,37(23):95-100.
-
2马利文,王尚志.GO-空间乘积的子空间[J].数学的实践与认识,2003,33(1):76-88.
-
3马利文,王尚志.正则不可数基数反映GO-空间的性质[J].Journal of Mathematical Research and Exposition,2003,23(4):685-690.
-
4马利文,王尚志.GO-空间乘积正规性的充要条件[J].数学学报(中文版),2004,47(1):141-148.
-
5马利文.GO-空间的仿紧性[J].数学的实践与认识,2005,35(4):214-218.
-
6马利文,王尚志.两个GO-空间乘积的正规性[J].数学学报(中文版),2002,45(2):399-404.
-
7马利文.有限个GO-空间乘积的遗传集体Hausdorff性(英文)[J].数学进展,2012,41(2):249-252.
-
8师维学,姜广浩.GO-空间上紧半层序扩张的一个注记[J].吉林师范大学学报(自然科学版),2007,28(3):6-7.
-
9马利文,王尚志.GO-空间乘积的子空间的正交紧性[J].数学的实践与认识,2005,35(3):229-232.
-
10马利文,王尚志.GO-空间乘积的子空间的广义仿紧性[J].数学的实践与认识,2003,33(3):113-118. 被引量:1