期刊文献+

半线性微分方程的概自守与伪概自守解(英文) 被引量:3

Almost Automorphic and Pseudo Almost Automorphic Solutions of Semilinear Differential Equations
下载PDF
导出
摘要 在Banach空间中,利用发展系统的算子半群理论和Banach压缩原理,在半线性微分方程x′(t)=A(t)x(t)+f(t,x(t))满足一定的条件下,证明了其概自守与伪概自守mild解的存在性与唯一性. By using some new analysis techniques, we give a simple proof for a theorem due to Shimoji and Takahashi.
出处 《应用泛函分析学报》 CSCD 2009年第4期294-300,共7页 Acta Analysis Functionalis Applicata
基金 Supported by the National Natural Science Foundation of China(10671205) The Science and Technology Foundation of China University of Mining and Technology(OK060156)
关键词 概自守 伪概自守 半线性微分方程 发展系统 指数稳定 a family of infinitely many nonexpansive mappings W-mapping common fixed point Dotson's lemma
  • 相关文献

参考文献13

  • 1N'Guerekata G M. Topics in Almost Automorphy[M]. New York: Springer-Verlag,2005.
  • 2N'Guerekata G M. Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations[J]. Semigroup Forum, 2004,69 : 80-86.
  • 3Goldstein J A, N'Guerekata G M. Almost automorphic solutions of semilinear evolution equations[J]. Proc Amer Math Soc, 2005, 133: 2401-2408.
  • 4Ezzinbi K, N'Guerekata G M. Massera type theorem for almost automorphic solutions of functional differential equations of neutral type[J]. J Math Anal Appl,2006,316:707-721.
  • 5Ezzinbi K, N'Guerekata G M. Almost automorphic solutions for some partial functional differential equations[J]. J Math Anal Appl,2007,328(1):344-358.
  • 6Ezzinbi K, Fatajou S, N'Guerekata G M. Pseudo-almost-automorphic solutions to some neutral partial functional differential equations in Banach spaces [J].Nonlinear Analysis (2008), doi: 10. 1016/j. na, 2008,02,039.
  • 7Xiao Ti-jun, Liang Jin, Zhang Jun. Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces[J]. Semigroup Forum, 2008,76,518-524 ,doi : 10. 1007/s00233-007- 9011-y.
  • 8Liang Jin, et al. Some properties of pseudo-almost automorphic functions and applications to abstract differential equations[J]. Nonlinear Analysis (2008),doi:10. 1016/j. na,2008,03,061.
  • 9N'Guerekata G M. Almost Automorphic and Almost Periodic Functions in Abstract Spaces[M]. New York-London-Moscow: Kluwer Acadmic Publishers, 2001.
  • 10Liang Jin, Zhang Jun, Xiao Ti-jun. Composition of pseudo almost automorphic and asymptotically almost automorphic functions[J]. J Math Anal Appl, 2008,340:1493-1499.

同被引文献23

  • 1鲁红英,于刚.具有时滞和反馈控制的离散Leslie系统的概周期解[J].应用泛函分析学报,2013,15(1):88-96. 被引量:4
  • 2YOSHIHIRO H.Bifurcation of Almost Periodic Solutions in Difference Equations[J].Journal of Difference Equations and Applications,2004,10(3):257-297.
  • 3MAQBUL M D.The Existence and Uniqueness of Almost Periodic Solutions for Abstract Functional Differential Equations[J].Electronic Journal of Differential Equation,2011,72:1-9.
  • 4PAUL H.B,DIAGANA T.Square-mean Almost Periodic Solutions Nonautonomous Stochastic Differential Equations[J].Electronic Journal of Differential Equations,2011,2007(17):1-10.
  • 5PAUL H B.Existence of Quadratic-mean Almost Periodic Solutions to Some Stochastic Hyperbolic Differential Equations[J].Electron Journal Differential Equations,2009,111:1-14.
  • 6FAROUK C.Quadratic-mean Pseudo Almost Periodic Solutions to Some Stochastic Differential Equations in a Hilbert Space[J].J.Appl Math.Comput,2012,40:427-443.
  • 7FU MM.,LIU Z X.Square Mean Almost Automorphic Solutions for Some Stochastic Differential Equations[J].Proc.Am.Math.Soc.,2010,138:3689-3701.
  • 8BOCHNER S.A New Approach to Almost-periodicity[J].Proc.Nat.Acad.Sci.USA,1962,48:2039-2043.
  • 9N' GUEREKATA G M.Almost Automorphic Functions and Amost Periodic Functions in Abstract Spaces[M].K1 uwer Academic/Plnum Publishers,New York-Bedin-Moscow,2001.
  • 10DIAGANA T,N' GUEREKATA G M.Amost Automorphic Solutions to Some Classes of Partial Evolution Equations[J].Appl.Math.Lett.,2007,20 (4):462-466.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部