摘要
通过选择适当的Lp函数并应用连续分解方法,给出了低于临界阶的Bochner-Riesz算子在Lp空间有界的新的证明,同时得到了该算子和Lipschitz函数构成的高阶交换子Lp有界性的必要条件.
In terms of continuous decomposition and choosing an appropriate L^p function, the author poses a new method to prove the necessary condition for L^p boundedness of Bochner-Riesz operators below the critical index. And a similar necessary condition for L^p-boundedness of higher order commutators generated by Bochner-Riesz operators below the critical index and Lipschitz functions is obtained by this method.
出处
《应用泛函分析学报》
CSCD
2009年第4期377-382,共6页
Acta Analysis Functionalis Applicata
基金
国家自然科学基金(10971141)
北京市自然科学基金(1092004)
天津师范大学引进人才基金(5RL067)