期刊文献+

C_0半群在非线性Lipschitz扰动下的范数连续性保持 被引量:2

On Persistence of Norm Continuity of Semgroups under Lipschitz Perturbations
原文传递
导出
摘要 研究有界线性算子强连续半群在非线性Lipschitz扰动下的正则性质保持问题.具体地,我们证明:如果强连续半群是直接范数连续的,则非线性扰动半群是直接Lipschitz范数连续的.结论推广了线性算子半群的范数连续性质保持,丰富和完善了非线性算子半群的理论. The paper is devoted to property persistence of strongly continuous semigroups of linear bounded operators under Lipschitz perturbations.Particularly,we prove that the nonlinearly perturbed semigroup is immediately Lipschitz norm continuous if the linear strongly continuous semigroup is immediately norm continuous.The result derived extends persistence of norm continuity of linear strongly continuous semigroups and enriches theory of semigroups of nonlinear operators.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第23期208-211,共4页 Mathematics in Practice and Theory
关键词 C0半群 非线性扰动 Lipschitz半群 范数连续性 semigroups nonlinear perturbation lipschitzian semigroups norm continuity
  • 相关文献

参考文献14

  • 1Phillips RS. Perturbation theory for semigroups of linear operators[J]. Trans Amer Math Soc, 1953, 74: 199- 221.
  • 2Casarino V, Piazzera S. On the stability of asymptotic properties of perturbed Co-scmigroups[J]. Forum Math, 2001.13:91-107.
  • 3Oytchinov B D, Hrusa W J, Watson S J. On Perturbations of differentiable semigroups[J]. Semigroup Forum, 1997, 54:100-111.
  • 4Li M, Gu X H, Huang F L. On unbounded perturbations of semigroups: compactness and norm conlinuity[J]. Semigroup Forum, 2002, 65:58-70.
  • 5Nagel R, Piazzera S. On the regularity properties of perturbed semigroups[J]. Rend Circ Mat Palermo Ser Ⅱ, Suppe, 1998, 56:99 -110.
  • 6Tamas M. On perturbations of eventually compact semigroups preserving eventual compactness[J]. Semigroup Forum, 2004, 69:317 -340.
  • 7许跟起,冯德兴.线性算子双半群的扰动定理[J].应用数学学报,2001,24(1):111-118. 被引量:2
  • 8赵转萍,张连平.最终范数连续半群的扰动[J].山西大学学报(自然科学版),2006,29(1):13-15. 被引量:3
  • 9Song X L, Peng J G. On strong convex compactness property of spaces of nonlinear operators[J], Bull Aust Math Soc, 2006, 74(3):411-418.
  • 10Peng J G, Xu Z B. A novel dual approach to nonlinear semigroups of Lipschitz operators[J]. Trans Amer Math Soc, 2005, 357: 409-424.

二级参考文献7

  • 1许跟起.Banach空间有界线性算子强连续双半群[J].纯粹数学与应用数学,1995,11(1):78-85. 被引量:5
  • 2PAZY A.Semigroups of Linear Operators and Applications to Partial Differential Equations[M].New York:Springer,1983.
  • 3ZHENG Q.Strongly Continuous Semigroups of Linear Operators[M].Wuhan:Huazhong University of Science and Technology Press,1994:101-103.
  • 4ENGEL K J,NAGEL R.One-parameter Semigroups for Linear Evolution Equation[M]//Graduate Texts in Mathematics,New York:Berlin,2004.194.
  • 5XU Gen-qi.Eventually Norm Continuous Semigroups on Hilbert Space and Perturbation[J].J Math Anal Appl,2004,289:493-504.
  • 6EL-MENNAOUI O,ENGEL K J.On the Characterization of Eventually Norm-continuous Semigroups in Hilbert Space[J].Arch Math,1994,(63):437-440.
  • 7ZHANG L P.Characterizations and Perturbation of Eventually Norm-continuous Semigroups on Hilbert Spaces,(submitted to Proceedings of the American Mathematical Society.)

共引文献2

同被引文献13

  • 1阿拉坦仓,黄俊杰.一类无穷维Hamilton算子的半群生成定理[J].高校应用数学学报(A辑),2006,21(3):357-364. 被引量:9
  • 2Bdtkai A, Maniar L, Rhandi A. Regularity properties of perturbed Hille-Yosida operators and retarded differential equations[J]. Semigroup Forum, 2002, 64(1): 55-70.
  • 3Oharu S, Takahashi T. Locally Lipschitz continuous perturbations of linear dissipative operators and non- linear semigroups[J]. Proceedings of the American Mathematical Society, 1987, 100(1): 187-194.
  • 4Oharu S, Takahashi T. Characterization of nonlinear semigroups associated with semilinear evolution equa- tions[J]. Transactions of the American Mathematical Society, 1989, 311(2): 593-619.
  • 5Iwamiya T, Takahashi T. Characterization of nonlinearly perturbed semigroups[J]. Lecture Notes in Math- ematics, Berlin: Springer-Verlag, 1993, 1540: 85-102.
  • 6Song X L, Peng J G. Lipschitzian semigroups and abstract functional differential equations[J]. Nonlinear Analysis: Theory, Method Applications, 2010, 72(5): 2346-2355.
  • 7Engel K J, Nagel R. One-parameter semigroups for linear evolution equations[M]. New York: Springer-Verlag, 2000.
  • 8Neerven J V. The adjoint of a semigroup of linear operators[J]. Lecture Notes in Mathematics, Berlin: Spinger-Verlag, 1992, 1529: 1-18.
  • 9Peng J G, Xu Z B. A novel dual approach to nonlinear semigroups of Lipschitz operators[J]. Transactions of the American Mathematical Society, 2005, 357(1): 409-424.
  • 10Nagel R, Sinestrari E. Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators[J]. Lecture Notes in Pure and Applied Mathematics. New York: Marcel Dekker. 1994. 150: 51-70.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部