期刊文献+

基于本体的汉语领域命名实体识别 被引量:3

Recognition of Chinese Domain Named Entities Based on Ontology
下载PDF
导出
摘要 命名实体识别是众多自然语言处理任务的核心内容之一,也是近年来的领域研究热点。本文将命名实体分为两大类:常规命名实体和领域命名实体。基于已经构建的领域本体MPO,本文提出一种基于本体知识规则与统计方法相结合的领域命名实体识别方法。该方法通过本体化实例,获取实体构成词性规则模板,结合CRFs机器学习模型,进行领域命名实体识别。实验结果表明:相比运用单一统计方法而言,该方法能使领域实体的识别性能显著提高,F值达到92.36%。同时表明本体化知识规则的有效运用,能够在领域实体边界和特殊形式领域实体识别的准确率上发挥积极作用。 Named Entity Recognition (NER) is one of kernel task in many Natural Language Processing (NLP) applications, which has recently become the hot spot of research. Named Entities are classified into General Named Entities (GNEs) and Domain Named Entities (DNEs) in this paper. We put forward a method of Chinese Domain Named Entity Recognition (DNER) which combining Conditional Random Field (CRF) with the rule templates of POS based on formalized instances that acquired from domain ontology constructed already. Results of experiments indicate that such a method can improve effectively the performance on DNER and F-measure has reached 92.36% . Experimental data also show that ontological knowledge can make great effect in recognizing the boundaries of DNEs and DNEs with special forms.
出处 《情报学报》 CSSCI 北大核心 2009年第6期857-863,共7页 Journal of the China Society for Scientific and Technical Information
基金 基金项目:本文得到国家863(2006AA012152,2006AA010109),国家自然科学基金(60672149)资助.
关键词 领域实体 领域命名实体识别 本体 词性规则模板 CRFS DNE DNER domain ontology POS-Rule Template CRFs
  • 相关文献

参考文献8

  • 1Lafferty J,McCallum A,Pereira F.Conditional random fields:Probabilistic models for segmenting and labeling sequence data[C].//Brodley C,Danyluk A,eds.Proc.of the 18th Int'l Conf.on Machine Learning (ICML-01).Williams College:Morgan Kaufmann Publishers,2001:282-289.
  • 2Church K W,Hanks P.Word association norms,mutual information and lexicography[J].Computational Linguistics,1990(3):22-29.
  • 3Studer R,Benjamins V R,Fensel D.Knowledge Engineering:Principles and Methods[J].Data and Knowledge Engineering,1998.25(1-2):161-197.
  • 4Shumin Shi,Heyan Huang.Anaphora Resolution in Chinese Text Based on Domain Ontology[C].//Yangxiang He,Guozheng Xiao,eds.Proc.Of ICCC07.Recent Advance of Chinese Computing Technologies,Singapore:COLIPS Publications,2008:134-139.
  • 5黄河燕,张克亮,张孝飞.基于本体的专业机器翻译术语词典研究[J].中文信息学报,2007,21(1):17-22. 被引量:10
  • 6王小捷,钟义信.基于Ontology的英汉机器翻译研究[J].中文信息学报,2000,14(5):8-15. 被引量:9
  • 7廖乐健,曹元大,李新颖.基于Ontology的信息抽取[J].计算机工程与应用,2002,38(23):110-113. 被引量:31
  • 8Protégé.[OL].[2008-06-20].http://protege.stanford.edu/index.html/.

二级参考文献16

  • 1http://wordnet.princeton.edu/
  • 2Neches,R.,R.E.Fikes,T.Finin,T.R.Gruber,T.Senator & W.R.Swartout.Enabling Technology for Knowledge Sharing[J].AI Magazine,1991,12(3):36-56.
  • 3Gruber,T.Ontolingua:A Translation Approach to Portable Ontology Specifications[J].Knowledge Acquisition,1993,5(2):199-200.
  • 4Swartout,B.,R.Patil,K.Night & T.Russ.Toward Distributed Use of Large-scale Ontologies[J].Ontological Engineering,AAAI-97 Spring symposium series,1997:138-148.
  • 5http://www.opencyc.org/.
  • 6http://www.aiai.ed.ac.uk/project/enterprise/enterprise/ontology.html.
  • 7http://hcs.science.uva.nl/projects/NewKACTUS/library/library.html.
  • 8http://www.icsi.berkeley.edu/framenet/.
  • 9http://www.keenage.com/.
  • 10http://www.hncnlp.com/.

共引文献46

同被引文献109

引证文献3

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部