期刊文献+

普通型Bell多项式及其矩阵 被引量:1

Matrices Related to the Ordinary Bell Polynomials
下载PDF
导出
摘要 给出了普通型Bell多项式的性质,得到了普通型Bell多项式矩阵的分解。求出了Bell多项式矩阵与Fibonacci矩阵之间的关系,进而得到了普通型Bell多项式与Fibonacci数之间的关系。 The properties of the ordinary Bell polynomials are given and the factorization of the ordinary Bell polynomials matrix is obtained.The connection between the ordinary Bell matrix and the Fibonacci matrix is studied,moreover,the relationship between the ordinary Bell polynomials and the Fibonacci numbers are also derived from the corresponding matrix representations.
出处 《科学技术与工程》 2009年第23期6949-6952,共4页 Science Technology and Engineering
关键词 普通型Bell多项式 Bell多项式矩阵 FIBONACCI数 Fibonacci矩阵 ordinary Bell polynomial Bell polynomial matrix Fibonacci number Fibonacci matrix
  • 相关文献

参考文献8

  • 1Zhao X Q, Wang T M. The algebraic properties of the generalized Pascal matrices associate with the exponential families. Linear Algebra Appl, 2000 ;318 ( 1--3 ) :45--52.
  • 2Aceto L, Trigiante D. The matrices of Pascal and other greats. Amer Math Monthly, 2001 ; 108 ( 3 ) : 232--245.
  • 3Wang W P, Wang T M. Matrices related to the Bell polynomials. Linear Algebra and its Applications, 2007 ;422( 1 ) :139--154.
  • 4Wang W P, Wang T M. Identities on Bell polynomials and Sheffer sequences. Discrete Math, 2009 ;309 (6) : 1637--1648.
  • 5杨胜良.关于Bell多项式与二项式型多项式序列的若干恒等式[J].兰州大学学报(自然科学版),2007,43(4):100-103. 被引量:2
  • 6Comtet L. Advanced Combinatorics. Reidel : Dordrecht, 1974.
  • 7Call G S, Velleman D J. Pascal's matrices. Amer Math Monthly, 1993 ;100(4) :372--376.
  • 8Fu X D, Zhou X. On matrices related with Fibonacci and Lueas numbers. Applied Mathematics and Computation, 2008; 200 (1): 96--100.

二级参考文献12

  • 1谭明术,王天明.具有二项式型多项式下三角矩阵的性质[J].Journal of Mathematical Research and Exposition,2005,25(1):183-190. 被引量:7
  • 2徐利治 王兴华.数学分析的方法及例题选讲[M].北京:高等教育出版社,1984.148-149.
  • 3ACETO L,TRIGIANTE D.The matrices of Pascals and other greats[J].Amer Math Monthly,2001,108(3):232-245.
  • 4ABURDENE M,KOZICK R.Efficient computation of discrete polynomial transforms[J].IEEE Signal Processing Letters,2001,10(10):285-288.
  • 5ZHAO Yu-qiu.A uniform asymptotic expansion of the single variable Bell polynomials[J].Journal of Computational and Applied Mathematics,2003,150(2):329-355.
  • 6COMTET L.Advanced Combinatories[M].Reidel:Dordrecht,1974.
  • 7ABBAS M,BOUROUBI S.On new identities for Bell's polynomials[J].Discrete Mathematics,2005,293(1-3):5-10.
  • 8BAYAT M,TEIMOORI H.The linear algebra of the generalized Pascal functional matrix[J].Linear Algebra Appl,1999,295(1-3):81-89.
  • 9TAN Ming-shu,WANG Tian-ming.Lah matrix and its algebraic properties[J].ARS Combinatoria,2004,70:97-108.
  • 10ZHANG Zhi-zheng,WANG Tian-ming.Generalized Pascal matrix and recurrence sequences[J].Linear Algebra Appl,1998,283(1-3):289-299.

共引文献1

同被引文献7

  • 1Call G S, Vellman D J. Pascal matrices, Amer Math Monthly, 1993 ; 100 : 372-376.
  • 2Zhang Z Z, Wang X. A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Applied Math, 2007 ; 155 : 2371-2376.
  • 3Brawer R, Pirovino M. The linear algebra of the Pascal matrix. Linear Algebra and its Applications, 1992; 174:13-23.
  • 4Sloane N J A. Jacobsthal Sequence, From the On-line Encyclopedia of Integer Sequences Web Resource. http://www, research, att. com/ nj as/sequences/A001045.
  • 5Lee G Y, Kim J S, Cho S H. Some combinatorial identities via Fibonacci numbers. Discrete Apppl Math, 2003; 130:527-534.
  • 6Lee G Y, Kim J S, Lee S G. Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. , 2002; 40 : 203-211.
  • 7张慧婷,王军霞.有关Bell多项式与Jacobsthal数的恒等式[J].甘肃科学学报,2010,22(1):39-42. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部