期刊文献+

FCM与KFCM-Ⅱ算法在医学MRI图像分割中的应用 被引量:5

FCM and KFCM—Ⅱ Algorithm with Application in Medical MRI Image Segmentation
下载PDF
导出
摘要 医学图像分割在医学图像处理,尤其是临床诊断的MRI图像分析中起着重要的作用。由于医学成像过程中存在着各种退化因素,当前各种分割算法仍难以很好地满足高层应用的需求。为解决这一问题,FCM(Fuzzy C-means clustering)算法和它的核方法版本KFCM(Kernel-based FCM)可以应用于图像分割以取得更好的性能表现。对FCM和KFCM-Ⅱ算法应用于MRI图像分割进行了比较,讨论了在这两种算法中应用灰度有偏场纠正的效果。实验结果表明,在FCM和KFCM-Ⅱ中采用有偏场模型可以取得更好的分割性能。 Medical image segmentation plays an important role in medical image processing,especially in MRI(Magnetic Resonance Imaging) image analysis for clinical diagnosis.Due to a variety of degradation factors in medical imaging process,the existed segmentation algorithms are still hard to satisfyingly meet the need of higher layer applications.For tackling this problem,FCM(Fuzzy C-means Clustering) and its kernel-based version KFCM(Kernel-based FCM) can be applied to image segmentation and achieve better performance. A comparison of FCM and KFCM--II algorithm with application in MRI image segmentation has been presented, and a discussion on the effect of intensity bias field correction in KFCM--II algorithm is given. The experiments show that better segmentation performance can be achieved by adopting bias field model to FCM and KFCM algorithms.
出处 《科学技术与工程》 2009年第22期6687-6693,共7页 Science Technology and Engineering
基金 国家自然科学基金(60602014)资助
关键词 MRI图像分割 图像灰度纠正 模糊聚类 模糊C均值聚类 核方法模糊C均值聚类 MRI image segmentation image intensity correction fuzzy clustering FCM KFCM
  • 相关文献

参考文献10

  • 1Liao Liang, Lin Tusheng, Zhang Weidong. MR brain image segmentation based on kernelized fuzzy clustering using fuzzy Gibbs random field model//IEEE/ICME International Conference on Complex Medical Engineering, 2007 : 524-530.
  • 2Scholkopf B, Mika S, Burges C J C, et al. Input space versus feature space in kernel-based methods. IEEE Trans on Neural Networks, 1999;10(5) : 1000-1017.
  • 3Chen, S C, Zhang, D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man and Cybernetics, 2004 ; 34 (4) : 1907-1916.
  • 4Zhang D Q, Chen S C. A novel kemehzed fuzzy C-means algorithm with applicationin medical image segmentation. Artificial Intelligence in Medicine, 2004 ; 32( 1 ) :37-50.
  • 5Chapelle O, Vapnik V N, Bousquet O, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002; 46 (1): 131-159.
  • 6Zhang D Q, Chen S C, Zhou Z H Learning the kernel parameters in kernel minimum distance classifier. Pattern Recognition, 2006;39 (1) :133-135.
  • 7Liao Liang, Lin Tusheng, Li Bi. MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach. Patter Recognition Letters, 2008; 29 ( 10 ) : 1580-1588.
  • 8Liao Liang, Lin Tusheng. A fast spatial constrained fuzzy kernel clustering algorithm for MRI brain image segmentation. International Conference on Wavelet and Pattern Recognition. International Conference on Wavelet and Pattern Recognition, 2007 : 82-87.
  • 9Liew A W C,Yan H. An adaptive spatial fuzzy clustering algorithm for 3 - D MR image segmentation. IEEE Transactions on Medical Imaging,2003 ;22 (9) : 1063-1075.
  • 10Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy cmeans algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging,2002; 21 (3) 193-199.

同被引文献72

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部