期刊文献+

小波阈值法在图像去噪领域的应用研究 被引量:7

Research on Wavelet Thresholding Method for Image Denoising
下载PDF
导出
摘要 小波阈值法在图像去噪领域已经成为热门的研究方向,为了使人们能对小波阈值法有概括性的了解。在对小波阈值法现有技术的优缺点进行分析的前提下,总结出小波阈值法在图像去噪领域的三个主要研究方向,即阈值选择的自适应性,小波系数的分布模型,以及防止Gibbs振荡,并探讨了小波阈值法在图像去噪领域的发展方向。 The method of wavelet thresholding for image denoising has been a hot issue in image processing. In order to provide people a summary knowledge of wavelet thresholding method, based on the analyzing the advantages and disadvantages of existing technology of wavelet thresholding for image denoising, three research directions of the method of wavelet thresholding are summariged in image denoising field, that is the adaptation of selecting thresholding, the building model of wavelet coefficients, and the solution of the Gibbs phenomenon. And the future trend of the method of wavelet thresholding is discussed in image denoising field.
作者 许立腾
出处 《科学技术与工程》 2009年第22期6748-6756,共9页 Science Technology and Engineering
基金 广东省产学研项目(2007B090400021) 广东省科技计划项目(2008B010200003) 2007B010400063)资助
关键词 小波阈值 图像去噪 自适应 系数模型 Gibbs振荡 wavelet thresholding image denoising adaptive coefficients model Gibbs phenomenon
  • 相关文献

参考文献16

二级参考文献165

  • 1杨永明,路陈红.小波包分析在一维及二维信号去噪中的应用[J].西安建筑科技大学学报(自然科学版),2004,36(3):364-367. 被引量:11
  • 2崔华,宋国乡.基于小波阈值去噪方法的一种改进方案[J].现代电子技术,2005,28(1):8-10. 被引量:79
  • 3赵永韬,王昱,郭兴蓬.基于小波的恒电量瞬态响应信号的滤波处理[J].物理化学学报,2005,21(9):1017-1021. 被引量:6
  • 4杨海峰,侯朝桢.基于证据理论的小波萎缩图像去噪[J].光学技术,2005,31(5):713-716. 被引量:3
  • 5[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 6[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 7[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 8[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 9[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 10[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.

共引文献509

同被引文献37

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部