期刊文献+

热传导反问题智能化识别 被引量:3

Identification of the Inverse Heat Conduction Problem with Intelligent Optimization Method
下载PDF
导出
摘要 基于一种时域精细算法和蚁群算法,利用测量信息和计算信息构造最小二乘函数,将多宗量反演识别问题转化为一个优化问题,建立了求解多宗量一维瞬态非线性热传导反问题的智能优化数学模型。可对非线性内热源强度、导温系数和边界条件等多个热学参数进行组合识别。对信息测量误差作了初步探讨,数值验证给出令人满意的结果。结果表明该计算模型能够对非线性多宗量热传导反问题进行有效的求解,并具有较高的计算精度。 A general intelligent optimization numerical model is presented to identify multi-variables of the nonlinear one dimensional inverse heat conduction problem in transient state by a precise algorithm for direct heat conduction, based on Ant Colony Algorithm. The inverse problem is formulated implicitly as an optimization problem with the cost functional of squared residues between calculated and measured quantities. Combined identifications can be carried out for non-linear source term, thermal diffusivity and boundary conditions etc. Satisfactory numerical validation is given including a preliminary investigation of effect of noise data on the results. Results show that the proposed numerical model can identify combined parameters for the inverse heat conduction problems with precision.
作者 薛齐文 魏伟
出处 《科学技术与工程》 2009年第24期7315-7318,共4页 Science Technology and Engineering
基金 国家自然科学基金(10802015) 辽宁省重点实验室基金(2008S036) 工业装备结构分析重点实验室开放基金(GZ0811)资助
关键词 蚁群算法 多宗量 非线性 精细算法 反问题 ant colony algorithm multi-variables non-linear precise algorithm inverse problem
  • 相关文献

参考文献1

二级参考文献8

  • 1俞昌铭.计算热物性参数的导热反问题[J].工程热物理学报,1982,3(4):372-378.
  • 2Stolz G J. Numerical solution to an inverse problem of heat conduction for simple shampes[J]. J. Heat Transfer, 1960, 82(C): 20-26.
  • 3Alifanov O M, Mikhailov V V. Solution of the nonlinear inverse conductivity problem by the iteration method[J]. J. Eng. Phys., 1978, 35(6): 1501-1506.
  • 4Kohn R, Vogelins M. Determining conductivity by boundary measurements[J]. Common Pure Appl. Math, 1984, 137(3): 289-298.
  • 5Goldberg D E. Genetic algorithms in search optimization & machine learning[M]. Reading, MA: Addison Wesley Publishing Company, 1989.
  • 6Eiben A E, Aarts E H, Van Hee K M. Global convergence of genetic algorithms: a infinite markov chain analysis[A]. Schwefel H P, Manner R. Parallel Problem Solving form Nature[C]. Heidelberg, Berlin: Springer-Verlag, 1991. 4-12.
  • 7王登刚,刘迎曦,李守巨,禹松坡.非线性二维稳态导热反问题的一种数值解法[J].西安交通大学学报,2000,34(11):49-52. 被引量:19
  • 8吴相豪,吴中如.混凝土热力学参数反分析模型[J].水力发电,2001,27(2):20-22. 被引量:12

共引文献6

同被引文献29

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部