期刊文献+

基于支持向量机的肿瘤基因数据挖掘 被引量:1

Data Mining for Tumor Gene Expression Data Based on Support Vector Machine
下载PDF
导出
摘要 针对两种类别的肿瘤分类问题,首先运用信噪比方法筛选出表达水平发生显著性变化的特征基因,然后采用支持向量机作为分类器进行肿瘤分类,通过对两种类别的白血病DNA微阵列数据进行计算,达到了97.1%的分类准确度。 To solve the problem of two-class tumor classification, this process is realized by selecting significant differentially expressed genes by signal to noise ratio and taking the support vector machine as the classifier to classify tumor. By using the method, the classification accuracy of 97.1% was obtained to Leukemia DNA microarray.
作者 于彬
出处 《科学技术与工程》 2009年第24期7370-7372,共3页 Science Technology and Engineering
基金 国家863高技术研究发展计划(2006AA02Z190) 山东省教育厅科研基金(J06P04)资助
关键词 DNA微阵列 支持向量机 分类 DNA microarray support vector machine classification
  • 相关文献

参考文献4

  • 1Golub T, Slonim D, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999 ;286 ( 5439 ) : 531--537.
  • 2孟宪花,于彬,王翼飞.基于贝叶斯统计方法的两总体基因表达数据分类[J].应用数学与计算数学学报,2005,19(2):31-39. 被引量:3
  • 3Antonov A V, Tetko I V, Mader M T, et al. Optimization models for cancer classification: extracting gene interaction information from microarray expression data. Bioinformatics, 2004 ;20 (5) : 644---652.
  • 4Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag New York Inc, 1995.

二级参考文献16

  • 1Griffiths,W.E., Hill,R.C., and Pope,P.J. Small sample properties of probit model estimators.J. Am. Stat. Assoc., 1987, 82: 929~937.
  • 2Sweisberg著 王静龙 梁小筠 李宝慧译.应用线性回归[M].中国统计出版社,1998..
  • 3Albert,J. and Chib,S. Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc1993, 88: 669~679.
  • 4Gelman,A., and Rubin,D.B Inference from iterative simulation using multiple sequences. Statistical Science, 1992a, 7: 457~511.
  • 5Winbugs: From http://www.mrc-bsu.cam.ac.uk/bugs.
  • 6Gloub,T.R., Slonim,D., Tamayo,P., Huard,C., Gaasenbeek,M., Mesirov,J., Coller,H., Loh,M.,Doening,J., Caligiuri,M., Bloomfiels,C. and Lender,E. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286: 531~537.
  • 7Hedenfalk,I., Duggan,D., Chen,Y., Radmacher,M., Bittner,M., Simon,R., Meltzer,P., Gusterson,B., Esteller,M., Raffeld,M. et al. Gene expression profiles in hereditary breast cancer. The New England Journal of Medicine, 2001, 344: 539~548.
  • 8Tusher,V.G., Tibshirani,R. and Chu,G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci., 2001, 98: 5116~5121.
  • 9West,M., Nevins,J.R., Marks,J.R., Spang,R. and Zuzan,H. Bayesian regression analysis in the ‘Large p, small n' paradigm with application in DNA microarray studies. 2000, Technical Report. Duck University.
  • 10Baldi,P. and Long,A.D. A Bayesian framework for the analysis of microarray expression data:regularized t-test and statistical inference of gene changes. Bioinformatics, 2001, 17: 509~519.

共引文献2

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部