期刊文献+

单晶硅阳极氧化层表面骨状磷灰石的体外诱导沉积

INDUCTION OF BONE-LIKE APATITE ON SINGLE CRYSTAL SILICON WITH ANODIC OXIDATION LAYER SURFACE
原文传递
导出
摘要 在磷酸钠碱性电解质中对单晶硅(100)进行阳极氧化处理,并将阳极氧化处理后的样品在模拟体液(simulated body fluid,SBF)中浸泡以考察其体外诱导骨状磷灰石沉积能力。用扫描电子显微镜观测体外浸泡前后样品的表面形貌,用电子能谱仪和X射线衍射仪研究阳极氧化后与体外浸泡不同时间后样品表面的成分。结果表明:单晶硅在10%的磷酸钠电解质中于5~20mA/cm2阳极氧化后,其表面原位形成火山口状结构,在SBF中浸泡1d后有磷灰石在单晶硅的阳极氧化层表面成核,浸泡6d后诱导形成了纳米骨状缺钙磷灰石层,体现出良好的体外诱导活性,表明阳极氧化处理是一种有希望应用于改善生物学与医学用单晶硅表面生物相容性的有效途径。 Single crystal silicon (100) was subjected to anodization in sodium phosphate alkaline medium,and then the anodic oxidation layer surface on silicon was soaked in a simulated body fluid (SBF) to investigate the in vitro induction for apatite.The morphologies of the specimens with pre-and post-soaking in the SBF were observed by scanning electron microscope.The compositions of the anodized and the SBF-soaked specimens were determined by electron dispersive spectroscopy and X-ray diffractometer.The results show that crater-like morphology in-situ forms on silicon surface after anodization at 5-20 mA/cm 2 in 10% sodium phosphate electrolyte.The nuclei and Ca-deficient bone-like coating with nano-sized apatite were formed on the silicon anodic surface after soaking in the SBF for 1 d and 6 d,respectively,indicating that the anodic surface favored the promotion of the minerization of bone-like apatite on silicon.This anodization approach could be used as a promising and efficient method for improving the surface biocompatibility of bio-inert single crystal silicon applied in the fields of biology and medicine.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2010年第1期143-147,共5页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(50702020)资助项目
关键词 单晶硅 骨状磷灰石 表面生物学改性 阳极氧化 体外诱导 single crystal silicon bone-like apatite surface biological modification anodization in vitro induction
  • 相关文献

参考文献14

  • 1BESSUEILLE F, DUGAS V, VIKULOV V, et al. Assessment of porous silicon substrate for well-characterised sensitive DNA chip implement [J]. Biosens Bioelectron, 2005, 21(6): 908-916.
  • 2ARCHERA M, CHR/STOPHERSEN M, FAUCHETA P M, Electrical porous silicon chemical sensor for detection of organic solvents [J]. Sens Actuators B, 2005, 106(1): 347-357.
  • 3SUET P L, KERYN A, WILLIAMS B, et al. Evaluation of mammalian cell adhesion on surface-modified porous silicon [J]. Biomaterials, 2006, 27(26): 4538-4546.
  • 4BHARAT B, DHARMA R T, MATTHEW T K, et al. Morphology and adhesion of biomolecules on silicon based surfaces [J]. Acta Biomaterialia, 2005, 1(3): 327-341.
  • 5ZAIRIA S, MARTELET C, JAFFREZIC R N, et al. Porous silicon a transducer material for a high-sensitive biochemical sensor: effect of a porosity, pores morphologies and a large surface area on a sensitivity [J]. Thin Solid Films, 2001, 383(1/2): 325-327.
  • 6LIU X Y, FUR K Y, POON R W Y, et al. Biomimetic growth of apatite on hydrogen-implanted silicon [J]. Biomaterials, 2004, 25(6): 5575- 5581.
  • 7CHEN S, ZHU Z, ZHU J, et al. Hydroxyapatite coating on porous silicon substrate obtained by precipitation process [J]. Appl Surf Sci, 2004, 230(1/4): 418-424.
  • 8MIGUEL M, MICHEL L, CARMEN J J. Hydroxyapatite coatings obtained by the thermal activation of polymeric sols [J]. Int J Inorgan Mater, 2001, 3(8): 1153-1155.
  • 9VLADIMIR V S, JEFFERY L C. Bias-assisted in vitro calcification of calcium disilicide growth layers on spark-processed silicon [J]. Biomaterials, 2006, 27(20): 3726-3737.
  • 10SEAL S, BARR T L, KREZOSKI S, et al. Surface modification of silicon and silica in biological environment: an X-ray photoelectron spectroscopy study [J]. Appl Surf Sci, 2001, 173(3/4): 339-351.

二级参考文献11

  • 1[1]KELLER F, HUNTER M S, ROBINSON D L. Structural features of anodic oxide films on aluminum[J]. J Electrochem Soc, 1953, (100): 411-419.
  • 2[2]GRUBBS C A. Anodizing of aluminum[J]. Met Finish: Guidebook Dir Issue, 1999, 97(1): 480-496.
  • 3[3]THOMPSON G E. Porous anodic alumina: fabrication, characterization and applications[J]. Thin Solid Films, 1997, 297(1-2): 192-201.
  • 4[4]THOMPSON G E, FURNEAUX R C, WOOD G C. Nucleation and growth on porous anodic films on aluminum[J]. Nature, 1978, 272(5652): 433-435.
  • 5[5]HEBER K V. Studies on porous Al2O3 growth--Ⅰ physical model[J]. Electrochim Acta, 1978, 23: 127-133.
  • 6[6]HEBER K V. Studies on porous Al2O3 growth--Ⅱ ionic conduction[J]. Electrochim Acta, 1978, 23: 135-139.
  • 7[7]PATERMARAKIS G, MOUSSOUTZANIS K. Electrochemical kinetic study on the growth of porous anodic oxide films on aluminum[J]. Electrochim Acta, 1995, 40(6): 699-708.
  • 8[8]ALMAWLAWI D, LIU Z, MOSKOVITS M. Nanowires formed in anodic oxide nanotemplates[J]. J Mater Res, 1994, 94: 1 014-1 018.
  • 9[9]MARTIN C R. Nanomaterials: a membrane-based synthetic approach[J]. Science, 1994,266:1 961-1 966.
  • 10[10]ROUTKEVITCH D, BIGIONI T, MOSKOVITS M, et al. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates[J]. J Phys Chem, 1996, 100: 14 037-14 047.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部