期刊文献+

磷酸钒锂正极材料的合成与性能研究 被引量:17

Synthesis and Electrochemical Characteristics of Cathode Materials Li_3V_2(PO_4)_3
下载PDF
导出
摘要 本文以LiOH·H2O,NH4VO3,NH4H2PO4和柠檬酸等为原料采用流变相法成功地合成了磷酸钒锂化合物。利用XRD,TEM等手段对目标产物的结构和形貌进行了表征,结果表明:在800℃煅烧的样品具有单一纯相的单斜晶体结构。晶体颗粒分布在200—500nm范围,而且在颗粒表面包覆了一层碳,有利于材料的导电率的改善。对该材料的电化学性质进行了测试,实验发现:800℃煅烧的样品在0.1C和1C倍率电流条件下,首次放电比容量分别高达122.8和107mAh·g^-1,经过30次循环后容量衰减很少。交流阻抗谱证实了800℃煅烧的样品具有较高的电导率。本文对800℃煅烧的样品具有较好电化学性能的原因进行了初步讨论。 A novel rheological phase method was used to synthesize nanocrystalline Li3V2(PO4)3 compound. In this route, LiOH ·H2O, NH4VO3, NH4H2PO4 and citric acid were selected as starting materials to prepare precursor, and the Li3V2(PO4)3 was obtained by sintering precursor at different temperature for 8 h in flowing argon. The Li3V2(PO4)3 has been characterized by XRD and TEM techniques, the compound synthesized at 800 ℃ take on pure monoclinic crystal structure, the particle size of the samples are ranged from 200-500 nm and there is a layer of carbon particles on the surface of Li3V2(PO4)3 particles, which is available for enhancing the conductivity of LiaV2(PO4)3. The influence of sinterirlg temperatures on electrochemical properties of Li3V2(PO4)3 has been investigated also, the results showed that the Li3VE(PO4)3 synthesized at 800 ℃ exhibited the highest initial discharge capacity (122 mAh·g^-1 at 0.1C and 107 mAh·g^-1 at 1C, respectively) and good capacity retention in the voltage range of 3.0 -4.3 V. The electrochemical impedance spectroscopy (EIS) showed that the sample synthesized at 800 ℃ behaved the higher conductivity. The reasons for the excellent electrochemical performance of the carbon coated Li3V2(PO4)3 calcined at 800 ℃cathode material were presented also.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2010年第1期126-131,共6页 Chinese Journal of Inorganic Chemistry
基金 绿色化学合成技术国家重点实验室培育基地开放研究基金资助
关键词 磷酸钒锂 正极材料 流变相反应法 电化学性能 lithium vanadium phosphate cathode materials rheological phase reaction electro-chemical properties
  • 相关文献

参考文献31

  • 1Saidi M Y. Baker J, Huang H, et al. Electrochem. Solid-State Lett., 2002 5(7):A 149-A151.
  • 2Fu P, Zhao Y M, Dong Y Z, et al. Electrochim. Acta, 2006, 52:1003-1008.
  • 3Sato M, Ohkawa H, Yoshida K, et al. Solid State bruit, 2000, 135:137-142.
  • 4YANGGai(杨改) YINGJie-Rong(应皆荣) GAOJian(高剑) etal.Xiyou Jinshu Cailiao YuGongcheng,2008,37(5):936-940.
  • 5ZHUXian-Jun(朱先军) LIUYun-Xia(刘云霞) GENGLiang-Mei(耿良梅) etal.Dianchi,2007,37(5):390-393.
  • 6Yin S C, Grondey H, Strobel P, et al. J. Am. Chem. Soc., 2003,125(34): 10402-10411.
  • 7Saidi M Y, Barker J, Huang H, et al. J. Power Source, 2003, 119-121:266-272.
  • 8LIUSu-Qin(刘素琴) TANGLian-Xing(唐联兴) HUANGKe-Long(黄可龙) etal.Zhongguo Youse Jinshu Xuebao,2005,15(8):1294-1299.
  • 9Sato M, Ohkawa H, Yoshida K, et al. Solid State Ionic, 2000,135(1/2/3/4): 137-142.
  • 10Morgan D, Ceder G, Saidi M Y, et al. J. Power Sources, 2003,119-121:755-759.

二级参考文献19

共引文献15

同被引文献161

引证文献17

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部