期刊文献+

具高阶Laplace算子的非线性脉冲时滞双曲型方程的振动判据 被引量:10

OSCILLATION CRITERIA FOR NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATIONS WITH HIGHER ORDER LAPLACE OPERATOR
原文传递
导出
摘要 研究一类具高阶Laplace算子的非线性脉冲时滞双曲型偏微分方程的振动性,利用特征函数法和一阶脉冲时滞微分不等式,获得了该类方程在两类不同边值条件下所有解振动的若干充分性判据,所得结论充分反映了脉冲和时滞在振动中的影响作用。 Oscillatioy properties of a class of nonlinear impulsive delay hyperbolic partial differential equations with higher order Laplace opertor is studied. By using the eigenvalue function method and first order impulsive delay differential inequalities, some sufficient criteria for the oscillation of all solutions of the equations are obtained under two kinds of different boundary conditions. The results fully reflect the influence of impulse and delay in oscillation.
作者 罗李平 杨柳
出处 《系统科学与数学》 CSCD 北大核心 2009年第12期1672-1678,共7页 Journal of Systems Science and Mathematical Sciences
基金 湖南省教育厅科研资助项目(07C164) 湖南省自然科学基金资助项目(06JJ5001)
关键词 脉冲 双曲型偏微分方程 振动性 高阶Laplace算子. Impulse, hyperbolic partial differential equation, oscillation, higher order Laplace operator.
  • 相关文献

参考文献7

二级参考文献22

共引文献72

同被引文献61

  • 1张雨田,罗琦.脉冲中立型时滞抛物方程的振动性(英文)[J].数学杂志,2006,26(3):272-276. 被引量:19
  • 2罗李平,欧阳自根.非线性脉冲中立型时滞抛物偏微分方程的振动性[J].吉林大学学报(理学版),2007,45(1):23-28. 被引量:7
  • 3罗李平.非线性脉冲时滞抛物型偏微分方程的强迫振动性[J].应用数学,2007,20(2):357-360. 被引量:10
  • 4Luo Liping,Peng Baiyu,Ouyang Zigen.Oscillation of nonlinear impulsive delay hyperbolic partial differential equations[J].Chin.Quart.J.of Math.,2009,24(3):439-444.
  • 5Liu A P,Ma Q X,He M X.Oscillation of nonlinear impulsive parabolic equations of neutral type[J].Rocky Mountain J.Math.,2006,36(3):1011-1026.
  • 6Li W N,Han M A,Meng F W.Necessary and sufficient conditions for oscillation of impulsive parabolic differential equations with delays[J].Applied Mathematics Letters,2005,18(10):1149-1155.
  • 7Bainov D, Minchev E. Oscillation of the solutions of impulsive parabolic equations[J]. J Comput Appl Math, 1996, 69(2): 207-214.
  • 8Fu X L, Liu X Z. Oscillation criteria for impulsive hyperbolic systems[J]. Dynamics of Continu- ous,Discrete and Impulsive Systems, 1997, 3(2): 225-244.
  • 9Bainov D, Minchev E. Forced oscillation of solutions of impulsive nonlinear parabolic differential- difference equations[J]. J Korean Math Soc, 1998, 35(4): 881-890.
  • 10Luo J W. Oscillation of hyperbolic partial differential equations with impulses[J]. Appl Math Comput, 2002, 133(2-3): 309-318.

引证文献10

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部