期刊文献+

一种基于组合核函数的非线性盲源分离方法研究 被引量:5

Nonlinear Blind Source Separation Based on Compound Kernel Function
下载PDF
导出
摘要 核函数方法由于其有效性和简洁性在非线性盲源分离问题的探索中得到了应用,但其单一核的映射不能很好解决完全非线性问题。针对这一不足,提出了一种采用组合核函数分离非线性混合信号的方法。通过引入变化尺度因子将不同核函数纳入一个整体成为组合核函数,利用分离信号的互信息作为目标函数来反馈调节该组合核函数的尺度因子,以此寻找到对不同非线性的最佳映射。仿真结果证实了该算法的有效性,且在解决完全非线性问题时,组合核函数比单一核函数具有更好的性能。 Kernel Function method has been applied in exploring nonlinear blind source separation for its validity and simplicity. However, single kernel function cannot well solve the absolute nonlinear problem. So a novel separation algorithm based on compound kernel function was proposed. In the algorithm, different kernel function was combined as a whole through variable measure factors, mutual information of separated signal was used as target function to reflect and regulate the measure factors of the compound kernel function, so as to reach an optimum different nonlinear mapping. Simulation results verify the effectiveness of the proposed method; and in solving absolute nonlinear problem, compound kernel function unfolds a better performance than single kernel function.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第1期1-4,共4页 Journal of System Simulation
基金 国家863创新基金(2007AAJ129)
关键词 非线性盲源分离 相关矩阵 组合核函数 特征向量 nonlinear blind source separation correlation matrices compound kernel function eigenvector
  • 相关文献

参考文献9

  • 1A Hyvarinen, J Karhunen, E Oja. Independent Component Analysis [M]. New York, USA: Wiley, 2001.
  • 2张道信,吴小培,沈谦,郭晓静.独立分量提取的在线算法及其应用[J].系统仿真学报,2004,16(1):17-19. 被引量:10
  • 3P Pajunen, A Hyvarinen, J Karhunen. Nonlinear blind source separation by self-organizing maps [C]// Proceedings of the International Conference on Neural Information Processing, Hong Kong, China, 1996. New York, USA: Springer-Verlag, 1996: 1207-1210.
  • 4W L Woo, S Sali. General multilayer perceptron demixer scheme for nonlinear blind signal separation [J]. IEE Proc. Vis. Image Signal Process (S1350-245X), 2002, 149(5): 253-262.
  • 5D Martinez, A Bray. Nonlinear blind source separation using kernels [J]. IEEE Transactions on Neural Network (S1045-9227), 2003, 14(1): 228-235.
  • 6高鹰,姚振坚,李朝晖,谢胜利.基于广义特征值和核函数的非线性盲分离算法[J].系统工程与电子技术,2006,28(10):1490-1493. 被引量:5
  • 7Ana Maria Tome. The generalized eigendecomposition approach to the blind source separation problem [J]. Digital Signal Processing (S1051-2004), 2006, 16(3): 288-302.
  • 8Burges Cjc. A tutorial on support vector machines for pattern recognition [J]. Knowledge Discovery and Data Mining (S0950-7051), 1998, 2(2): 1-47.
  • 9Y Tan, J Wang. Nonlinear blind source separation using higher order statistics and a genetic algorithm [J]. IEEE Transactions on Evolutionary Computation (S 1089-788X), 2001, 5(6): 600-612.

二级参考文献17

  • 1[1]A J Bell,T J Sejnowski.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7(6): 1129-1159.
  • 2[2]T W Lee,et al.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources [J].Neural Computation,1999,11(2): 409-433.
  • 3[3]A Hyvarinen,et al.A fast fixed-point algorithm for independent analysis [J].Neural Computation,1997,9: 1483-1492.
  • 4[4]Linsker R.An application of the principle of maximum information preservation to linear systems [A].Touretzky D S.Advances in Neural Information Processing System 1 [C].Morgan-Kauffman,1989.
  • 5[5]Amari.Natural gradient works efficiently in learning [J].Neural Computation,1998,10: 251-276.
  • 6Pajunen P,Hyvarinen A,Karhunen J.Nonlinear blind source separation by self-organizing maps[C]//Proc.of Int.Conf.on Neural Information Processing,1996:1207-1210.
  • 7Pajunen P,Karhunen J.A maximum likelihood approach to non-linear blind source separation[C]// Proc.of the Int.Conf.on Artificial Neural Networks (ICANN'97),Lausanne,Switzerland,1997:541-546.
  • 8Tan Y,Wang J.Nonlinear blind source separation using a radial basis function network.[J].IEEE Trans.on Neural Networks,2001,12(1):124-134.
  • 9Tan Y,Wang J.Nonlinear blind source separation using higher order statistical and a genetic algorithm[J].IEEE Trans.on Evolutionary Computation,2001,5(6):600-612.
  • 10Woo W L,Knor L C.Blind restoration of nonlinearly mixed signals using multiplayer polynomial neural network[J].IEE Proc.-Vis.Image Signal Process.,2004,151(1).

共引文献13

同被引文献37

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部