期刊文献+

解Riemann-Liouville分数阶导数微分方程两点边值问题(英文)

Solving Two-Point Boundary Value Problems of Fractional Differential Equations with Riemann-Liouville Derivatives
下载PDF
导出
摘要 研究了两类含Riemann-Liouville分数阶导数的分数阶微分方程两点边值问题。理论上,通过引入分数阶Green函数将含有Riemann-Liouville分数阶导数的两点边值问题等价转换成一个积分方程;并用Lipschitz条件和压缩映射原理给出了含有Riemann-Liouville分数阶导数的两点边值问题的解存在唯一的充分条件;数值上,设计了单打靶法,把含Riemann-Liouville分数阶导数的两点边值问题转化为含Riemann-Liouville分数阶导数的初值问题进行求解,并给出了较为精确的数值解。仿真结果表明:单打靶法是数值求解此类分数阶微分方程两点边值问题的有效工具。 Two kinds of two-point boundary value problems of fractional differential equations with Riemalm-Liouville derivatives (FBVPs) were studied. Analytically, via fractional Green functions, FBVPs were transformed into equivalent integral equations, and then existence and uniqueness of the solutions were proved according to the Lipschitz conditions and the contractive mapping principle. Numerically, the single shooting methods were designed, and solving FBVPs was transformed into solving initial value problems of fractional differential equations with Riemann-Liouville derivatives (FIVPs) in order to get approximation solutions. Simulation results show that the single shooting methods are natural and efficient in numerically solving these FBVPs.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第1期20-24,共5页 Journal of System Simulation
基金 open project(No.47549P0)of the State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences National Natural Science Foundation of China(Grant No.10872037) Natural Science Research Project of Henan Province(Grant No.2009A110017) Ministerio de Educación y Ciencia(Spain)(grant MTM2005-05573) Sabbatical Program(SAB2006-0070)of the Spanish Ministry of Education and Science
关键词 解的存在唯一性 分数阶微分方程 Riemann-Liouville分数阶导数 单打靶法 两点边值问题 数值仿真 existence and uniqueness fractional differential equations Riemann-Liouville derivatives single shooting method two-point boundary value problem numerical simulation
  • 相关文献

参考文献27

  • 1T S Aleroev. The Sturm-Loiuville Problem for a Second Order Ordinary Differential Equation with Fractional Derivatives in the Lower Terms (in Russian) [J]. Differentiarnye Uravneniya (S0374-0641), 1982, 18(2): 341-342.
  • 2U M Ascher, R M M Mattheij, R D Russell. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations [M]. New Jersey, USA: Prentice Hall, 1988.
  • 3Z Bai, H Lu. Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation [J]. J. Math. Anal. Appl. (S0022-247X), 2005, 311(2): 495-505.
  • 4P Bailey, L F Shampine, P Waltman. Nonlinear Two Point Boundary Value Problems [M]. New York, USA: Academic Press, 1968.
  • 5A Carpintri, F Mainardi. Fractals and Fractional Calculus in Continuum Mechanics [M]// CISM International Centre for Mechanical Sciences Series, Vol. 378. New York, USA: Springer-Verlag, 1997.
  • 6D Delbosco. Fractional Calculus and Function Spaces [J]. J. Fract. Calc. (S0918-5402), 1994, 6(1): 45-53.
  • 7K Diethelm, N J Ford. Numerical Solution of the Bagley-Torvik Equation [J]. BIT (S0006-3835), 2002, 42: 490-507.
  • 8K Diethelm, N J Ford, A D Freed. A Predictor-Corrector Approach for the Nttmerical Solution of Fractional Differential Equations [J]. Nonlinear Dynamics (S0924-090X), 2002, 29(1): 3-22.
  • 9K Diethelm, N J Ford, A D Freed. Detailed Error Analysis for a Fractional Adams Method [J]. Numerical Algorithms (S1017-1398), 2004, 36(1): 31-52.
  • 10M M Dzhrbashyan. A Boundary Value Problem for a Sturm-LiouviUe Type Differential Operator of Fractional Order (m Russian) [J]. Izv. Akad. Nauk Armyan. SSR, Ser. Mat. (S0002-3043), 1970, 5(2): 71-96.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部