期刊文献+

并行多重网格光滑子JGS与PGS的性能比较

Parallel Mulitgrid Smoothing:JGS vs. PGS
下载PDF
导出
摘要 研究两个并行多重网格光滑子JGS和PGS,它们都是串行的GS光滑子的并行化。研究表明:JGS和PGS的光滑效果,在并行子网格内部与GS相近,而在子网格交界处附近很差。为衡量并行光滑子在子网格交界处的光滑性能,文中首次引入并行收敛速度的概念。数值结果显示,在光滑一到三次时,JGS的并行收敛速度总体优于PGS。最后结论是:JGS和PGS都算不上好的并行光滑子,设计新的并行光滑子应着眼于寻找子网格交界处误差的产生原因。 The two parapllel multigrid smoothers, JGS and PGS, were studied. They are all parallelization of the sequential Gauss-Seidel (GS) smoother. It is shown that their smoothing performances are similar to GS in the interior of parallel subgrids, however the performances are bad in the neighborhood of the interfaces of subgrids for JGS and PGS. A new notion of parallel convergence rate is introduced to express the performances of the parallel smoothers on the interfaces of subgrids Numerical results indicate that, for smoothing from one to three times, JGS is better than PGS on parallel convergence rate generally. Finally, the conclusion is gained that either JGS or PGS is not good parallel smoother and the design of new parallel smoothers depends on finding out the reason of error on the interfaces of subgrids.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第1期38-40,共3页 Journal of System Simulation
基金 国家自然科学基金(10672143 10872037) 河南省教育厅自然科学研究项目(2009A110017) 中科院科学与工程计算重点实验室开放课题
关键词 并行光滑子 JGS PGS 并行多重网格 并行收敛速度 parallel smoother JGS PGS parallel multigrid parallel convergence rate
  • 相关文献

参考文献7

  • 1Zhu Yu. Andreas C Cangellaris. Multigrid Finite Element Methods for Electromagnetic field Modeling [M]. USA: IEEE Press, 2006.
  • 2U Trottenberg, C W Oosterlee. A Shiiller. Multigrid [M]. USA: Academic Press, 2001.
  • 3Mark F. Adams. A Distributed Memory Unstructured Gauss-Seidel Algrorithm for Multigrid Smoothers [C]// Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), Denver, Colorado, November 10-16, 2001. USA: IEEE, 2001.
  • 4Xie Dexuan, L Adams. New Parallel SOR Method by Domain Partitioning [J]. SIAM J. Sci. Comput. (S1064-8275), 1999, 20(6): 2261-2281.
  • 5Xie Dexuan. A new block parallel SOR method and its analysis [J]. SIAM J. Sci. Comput. (1064-8275), 2006, 27(5): 1513-1533.
  • 6Mark F. Adams. Marian Brezina, Jonathan Hu, Ray Tuminaro. Parallel multigrid smoothing: polynomial versus Gauss-Seidel [J]. J. Comput. Phys. (S0021-9991), 2003, 188(2): 593-610.
  • 7Xie Dexuan. New parallel symmetric SOR preconditioners by multi- type partitioning [J]. International Journal of Computer Mathematics (S0020-7160), 2009, 86(2): 287-300.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部