期刊文献+

基于邮件特征匹配的Botnet检测方法 被引量:2

Botnet detection method based on email characteristic match
下载PDF
导出
摘要 为降低特征提取的复杂度,提高分类速度,提出了一种基于邮件特征匹配的僵尸网络检测方法。不依赖于邮件具体内容和网络流量分析,通过对原始邮件进行概化,进而得到邮件特征值,然后利用海林格距离在僵尸网络邮件特征库中找到最匹配的值,从而检测发送垃圾邮件的僵尸网络类型。实验结果表明,该方法在预构建特征库的情况下对大量邮件进行分析,具有较高的效率和正确率。 To decrease the complexity of Botnet characteristic extraction and improve the speed of classification, a Botnet detection method based on Email characteristic match, which relies on neither Email detailed contents nor traffic analysis is presented. Raw emails are abstracted and Email characteristics are generated. Hellinger distance is used to find the most match characteristic in Botnet Email characteristic repository, then the Botnet that send the spam is classified. Experimental results show that the proposed method gained good accuracy and high efficency if enough spam Emails are trained and Botnet Email characteristic repository is well generated.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第1期45-47,共3页 Computer Engineering and Design
关键词 僵尸网络 垃圾邮件 邮件内容 特征分析 海林格距离 Botnet spam Emailcontent characteristic analysis Hellingerdistance
  • 相关文献

参考文献13

  • 1方圆,吴灏,杨利明.双层架构的P2P Botnet研究[J].计算机工程与设计,2008,29(11):2724-2726. 被引量:1
  • 2Symantec Inc.Symantec's global internet security threat report [R].Symantec,2008:5-6.
  • 3Banday M T, Qadri J A, Shah N A.Study of Botnets and their threats to intemet security[EB/OL].Sprouts: Working Papers on Information Systems,http://sprouts.aisnet.org/9-24,2009-07-30.
  • 4Timothy Strayer W, Lapsely D,Walsh R, et al.Botnet detection countering the largest security threat[M].Springer, 2008:1-24.
  • 5Li Zhuang,John Dunagan,Daniel R Simon,et al.Characterizing Botnets from Email spare records [C]. Proc of First USENIX Workshop on Large-Scale Exploits and Emergent Threats, 2008.
  • 6Yinglian Xie,Fang Yu, Kannan Achan,et al.Spamming Botnets: signatures and characteristics [J]. ACM SIGCOMM Computer Communication Review,2008,38(4): 171 - 182.
  • 7Anestis Karasaridis, Brian Rexroad, David Hoelin. Wide-scale Bomet detection and characterization[C].Proc of the first conference on First Workshop on Hot Topics in Understanding Botnets,2007.
  • 8陈光英.CCERT中文垃圾邮件过滤规则集[EB/OL].http://www.ccert.edu.cn/spam/sa/Chinese_rules.htm#1,2009-08-08.
  • 9王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 10范婕婷,赖惠成.一种基于SVM算法的垃圾邮件过滤方法[J].计算机工程与应用,2008,44(28):95-97. 被引量:5

二级参考文献44

共引文献132

同被引文献17

  • 1王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 2叶进星,郑捷文,林雪纲,许榕生.基于.NET的异构系统短信息解决方案[J].计算机工程,2006,32(12):112-113. 被引量:5
  • 3赵金东,于沛.Web应用中手机短消息模块的设计与应用[J].计算机工程与设计,2006,27(24):4801-4802. 被引量:4
  • 4Bailey M,Cooke E,Jahanian F, et al.A survey of botnet technology and defenses[C].Washington,DC,USA:Proceedings of the Cybersecurity Applications & Technology Conference For Homeland Security,2009:299-304.
  • 5Dennis Hofheinz, John M Lee, Martijn Stam. Obfuscation for cryptographie purposes [J]. Journal of Cryptology, 2010,23 (1): 121-168.
  • 6Christopher Kruegel, Thomas Toth.Using decision trees to improve signature-based intrusion detection[EB/OL].http://www. itsec.gov.cn/docs/20090507141559073176.pdf,2010-08-15.
  • 7Wang Ping, Wu Lei,Cunningham R,et al.Honeypot detection in advanced botnet attacks[J].International Journal of Information and Computer Security,2010,4( 1 ):30-51.
  • 8Gu G,Perdisci R,Zhang J, et al.BotMiner:Clustering analysis of network traffic for protocol and structure independent botnet detection[C].Proc of the 17th USENIX Security Symposium,2008.
  • 9Livadas C, Walsh R, Lapsley D, et al. Using machine learning techniques to identify botnet traffic[C].Proc of 31st IEEE Conference on Local Computer Networks,2006:967-974.
  • 10Guofei Gu, Phillip Porras,Vinod Yegneswaran,et al.BotHunter: Detecting malware infection through IDS-driven dialog correlation[C].Proc of the 16th USENIX Security Symposium,2007: 167-182.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部