期刊文献+

山苍籽核仁油合成生物柴油研究 被引量:8

Preparation of biodiesel from litsea cubeba kernel oil
下载PDF
导出
摘要 以山苍籽核仁油为原料,采用固体酸催化酯化-相转移催化酯交换反应合成生物柴油。从固体酸SO42-/ZrO2为催化剂进行酯化反应降低酸值,以十六烷基三甲基溴化铵(CTMAB)/NaOH为相转移催化剂进行酯交换反应,得到合成生物柴油的优化工艺条件。研究结果表明,固体酸SO42-/ZrO2催化酯化反应的最佳条件为:油重4%的SO42-/ZrO2,醇油摩尔比为10-1,温度为68℃,反应时间为4h,原油酸值降到2.52mg/g;该法相对浓硫酸催化酯化法具有不需耐酸设备、催化剂易回收、无废水排放等优点;相转移催化酯交换反应的最佳条件为:温度为25℃,0.5%的十六烷基三甲基溴化铵,油重1%的NaOH,醇油摩尔比为6-1,反应15min,原油酯交换率达到97.6%;采用相转移催化技术,反应在常温下进行,大大减少了能耗,缩短了反应时间,具有的产业化前景。 The production technology of biodiesel from litsea cubeba kernel oil with solid acid-esterification and phase transfer catalyst-transesterification was studied. First, litsea cubeba kernel oil was esterified with methanol catalyzed by solid acids SO42-/ZRO2, and then the first reaction product was transesterified with methanol catalyzed by the phase transfer catalyst of hexadecyl-trimethyl-ammonium bromide (CTMAB)/NaOH. The results show that the optimal parameters of esterification are as follows: 4% of SO42-/ZRO2, molar ratio of methanol to litsea cubeba kernel oil 10:1, 68 ℃ of reaction temperature and 4 h of reaction time, the acid value decreases to 2.52 mg/g. Compared with the traditional acidic-catalyzed method, this method has the advantages of no acid proof equipment, easy to recycle catalyst and no acidic waste water emission. The optimal parameters of transesterification are as follows: 25 ℃ of reaction temperature, 0.5% of hexadecyl-trimethyl-ammonium bromide, 1% of NaOH, molar ratio of methanol to the oil 6:1 and 15 min of reaction time. The ester exchanging rate is 97.6%. This method adopts phase transfer catalyst and produces industry prospect, which has many advantages such as energy-saving and time-saving under room temperature.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第6期1517-1521,共5页 Journal of Central South University:Science and Technology
基金 湖南省自然科学基金资助项目(06JJ4117) 湖南省科技攻关计划项目(2008SK4032)
关键词 山苍籽核仁油 生物柴油 酯化 酯交换 相转移催化剂 litsea cubeba kernel oil biodiesel esterification transesterification phase transfer catalyst
  • 相关文献

参考文献14

  • 1Srivastava A, Prasad R. Triglycerides-based diesel fuels[J]. Renewable & Sustainable Energy Reviews, 2000, 4(2): 111-133.
  • 2Marchetti J M, Miguel V U, Errazu A F. Possible methods for biodiesel production[J]. Renewable Sustainable Energy Reviews, 2007, 11(6): 1300-1311.
  • 3Vicente G, Martinez M, Aracil J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems[J]. Bioresource Technology, 2004, 92(3): 297-305.
  • 4Haas M J, Scott K M, Marmer W N, Foglia T A. In situalkaline transesterification: an effective method for the production of fatty acid esters from vegetable oils[J]. J Am Oil Chem Soc, 2004, 81(1): 83-89.
  • 5杨兆娟,周荣琪.从山苍籽油中提取高纯柠檬醛[J].香料香精化妆品,2002(4):13-15. 被引量:8
  • 6Choi E M, Hwang J K. Effects of methanolic extract and fractions from Litsea cubeba bark on the production of inflammatory mediators in RAW264.7 cells[J]. Fitoterapia, 2004 75: 141-148.
  • 7袁先友,陈铁壁,黄火秀.山苍子核仁油的提取及其应用[J].湖南科技学院学报,2006,27(11):181-182. 被引量:19
  • 8周文富.山苍籽油的生产与核仁油的深分离[J].化学世界,1993,34(3):135-138. 被引量:2
  • 9Canakci M, van Gerpan J. BD production via acid catalysis[J]. Trans Am Soc Agric Eng, 1999, 42(5): 1203-10.
  • 10Canakci M, van Gerpan J. BD production from oils and fats with high free fatty acids[J]. Trans ASAE, 2001, 44(4): 1429-1436.

二级参考文献38

共引文献43

同被引文献93

引证文献8

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部