期刊文献+

非水相体系酶催化反应研究进展 被引量:9

Enzymatic catalysis in non-aqueous solvents
原文传递
导出
摘要 非水相酶催化反应是酶催化反应中的一个重要方面。非水相溶剂通常可增加底物溶解度,减少水相中的副反应,加快生物催化的速率和效率,在药物及药物中间体和食品等方面具有较大的应用价值。以下探讨了非水相体系对酶活力及酶促反应速率的影响因素,并阐述酶的化学修饰、固定化及定点突变对酶活力的影响,进一步分析无溶剂系统、反胶束、超临界流体及离子液体的不同溶剂体系对酶反应速率及催化效率的影响。此外,还列举一些非水相酶催化反应的应用实例。 It is well known that non-aqueous enzymatic catalysis has emerged as an important area of enzyme engineering with the advantages of higher substrate solubility,increased stereoselectivity,modified substrate specificity and suppression of unwanted water-dependent side reactions.As a result,non-aqueous enzymatic catalysis has been applied in the biocatalytic synthesis of important pharmaceuticals and nutriceuticals.With the advancement of non-aqueous enzymatic catalysis in recent years,the efforts have been centered on the discovery and modification of solvent-tolerant biocatalysts for non-aqueous environments. Additionally, with the inevitable trends of green chemistry and sustainable development, green solvents have been utilized for increased number of enzymatic reactions to replace conventional organic solvents. In this review, modification, immobifization and mutagenesis of various enzymes for non-aqueous catalysis are discussed. Recent progress of non-aqueous enzymatic catalysis in solvent-free environments, reverse micelles, supercritical liquid and ionic liquid are also presented. In particular, while direct evolution, high-throughput screening and site-directed mutagenesis are combined as powerful tools for protein engineering, vapor/solid/ice water mixture, sticky solid-state liquid crystal and high density salt suspension are the future directions for solvent engineering in order to broaden the utility and elevate the efficiency of non-aqueous enzymatic catalysis.
出处 《生物工程学报》 CAS CSCD 北大核心 2009年第12期1789-1794,共6页 Chinese Journal of Biotechnology
基金 江苏省科技厅科技支撑计划(No.SBE200900234)资助~~
关键词 非水相 酶催化反应 有机溶剂耐受性 non-aqueous enzymatic catalysis organic solvent tolerance
  • 引文网络
  • 相关文献

参考文献2

二级参考文献35

  • 1Gillies B. , Yamazaki H. , Armstrong D. W.. Biotechnol. Lett. [J], 1987, 9:79-84
  • 2Hoq M. M., Yamane T., Shimizu S. et al.. J. Am. Oil Chem. [J] , 1984, 61: 776-781
  • 3Nishio T. , Chikano T. , Kamimura M.. Agric. Biol. Chem. [J], 1988, 52:1203-1208
  • 4Ergan F. , Trani M., Andre G.. J. Am. Biol. Chem. Soc. [J], 1991, 68:412-417
  • 5Perraud R., Laboret F.. Appl. Microbiol. Biotechnol. [J], 1995, 44:321-326
  • 6Hari Krishna S. , Karanth N. G.. Process Biochemistry[J], 2001, 37: 9-16
  • 7Hari Krishna S. , Manohar B. , Divakar S. et al.. Enzyme Microb. Technol. [J], 2000, 26: 131-136
  • 8Prazeres D. M. F. , Garcia F. A. P. , Gabral J. M. S. et al.. J. Chem. Tech. Biotechnol. [J], 1992, 53:159-164
  • 9Chang P. S. Rhee J. S.. Biocatalysis[J], 1990, 4:253-255
  • 10Welsh F. W. , Murray W. D. , Williams R. E.. Crit. Rev. Biotechnol. [J], 1989, 9:105-109

共引文献18

同被引文献145

引证文献9

二级引证文献35

相关主题

;
使用帮助 返回顶部