期刊文献+

基于稀疏成分分析的遥感影像分类 被引量:2

Remote sensing image classification based on sparse component analysis
下载PDF
导出
摘要 遥感影像分类一直是遥感研究的重点、难点和热点之一。针对经典的主成分分析法在不同地物的光谱存在重叠相关时,分类效果欠佳的缺陷,提出一种基于稀疏成分分析的遥感影像分类法。该方法利用稀疏性提取源信号,不要求源成分之间互不相关。实验结果表明,与主成分分析方法相比,基于稀疏成分分析的分类结果更可靠、更准确。 The classification of remote sensing images is a key issue and focused subject in remote sensing image processing. Considering that the classification result of classical principle component analysis (PCA) is not satisfying when the spectra of different ground objects are related, a new classification method based on sparse component analysis (SCA) is presented. The proposed method utilizes the sparseness characteristic to extract source signals, and does not demand the sources be independent. The experimental result shows that compared to principle component analysis, the classification result of SCA is more reliable and more accurate.
出处 《地球物理学进展》 CSCD 北大核心 2009年第6期2274-2279,共6页 Progress in Geophysics
基金 国家高技术研究发展计划(2007AA12Z156) 教育部新世纪优秀人才支持计划 国家自然科学基金项目(40672195) 北京市自然科学基金项目(4102030) 海南省自然科学基金项目(807062)联合资助
关键词 稀疏成分分析 遥感影像分类 主成分分析 数据挖掘 TM sparse component analysis, remote sensing image classification, principal component analysis, data mining, TM
  • 相关文献

参考文献14

二级参考文献163

共引文献189

同被引文献27

  • 1陈朝泰,高如曾.数量化理论在川南地区油气评判中的初步尝试[J].石油地球物理勘探,1991,26(1):57-66. 被引量:3
  • 2陈炳贵,黄梅.长、株、潭地区构造稳定性数学模拟研究[J].地球物理学进展,2005,20(4):950-954. 被引量:7
  • 3唐秋华,刘保华,陈永奇,周兴华,丁继胜.结合遗传算法的LVQ神经网络在声学底质分类中的应用[J].地球物理学报,2007,50(1):313-319. 被引量:27
  • 4Webb A R.An approach to nonlinear principal componentsanalysis using radially symmetrical kernel functions[J].Statistics and Computing,1996,6(2):159-168.
  • 5Saegusaa R,Sakanob H,Hashimotoa S.Nonlinear principal component analysis to preserve the order of principal components[J].Neurocomputing,2004,61(1):57-70.
  • 6Sch(o)lkopf B,Smola A J,Müller K R.Nonlinear component analysis as a kernel eigen-value problem[J].Neural Computation,1998,10(5):1299-1319.
  • 7Wu K S,Simon H.Thick-restart Lanczos method for large symmetric eigenvalue problems[J].SIAM Journal of Matrix Analysis Application,2000,22(2):602-616.
  • 8Stathopoulos A,Saad Y,Wu K.Dynamic thick restarting of the Davidson,and the implicitly restarted arnoldi methods[J].SIAM Journal on Scientific Computing,1998,19(1);227-245.
  • 9Calvetti D,Reichel L,Sorensen D.An implicitly restarted Lanczos method for large symmetric eigenvalue problems[J].Electronic Transactions on Numerical Analysis,1994,2:1-21.
  • 10Wang D, Zeng X J, John A K. Hierarchical hybrid fuzzyneural networks for approximation with mixed input variables. Neurocomputing, 2007, (70) : 3019-3033.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部