摘要
遥感影像分类一直是遥感研究的重点、难点和热点之一。针对经典的主成分分析法在不同地物的光谱存在重叠相关时,分类效果欠佳的缺陷,提出一种基于稀疏成分分析的遥感影像分类法。该方法利用稀疏性提取源信号,不要求源成分之间互不相关。实验结果表明,与主成分分析方法相比,基于稀疏成分分析的分类结果更可靠、更准确。
The classification of remote sensing images is a key issue and focused subject in remote sensing image processing. Considering that the classification result of classical principle component analysis (PCA) is not satisfying when the spectra of different ground objects are related, a new classification method based on sparse component analysis (SCA) is presented. The proposed method utilizes the sparseness characteristic to extract source signals, and does not demand the sources be independent. The experimental result shows that compared to principle component analysis, the classification result of SCA is more reliable and more accurate.
出处
《地球物理学进展》
CSCD
北大核心
2009年第6期2274-2279,共6页
Progress in Geophysics
基金
国家高技术研究发展计划(2007AA12Z156)
教育部新世纪优秀人才支持计划
国家自然科学基金项目(40672195)
北京市自然科学基金项目(4102030)
海南省自然科学基金项目(807062)联合资助
关键词
稀疏成分分析
遥感影像分类
主成分分析
数据挖掘
TM
sparse component analysis, remote sensing image classification, principal component analysis, data mining, TM