摘要
基于Majhi等人最近的工作,利用狄拉克方程,在半经典近似外讨论了Kerr-Newman黑洞的熵修正.在单位制G=c=kB=1下,由于普朗克常数与普朗克长度,普朗克质量和普朗克电荷的平方成正比,作用量的量子修正项与半经典项的比例常数被选为(Mrh-Q2/2)-1.结合视界方程的微分形式和黑洞热力学第一定律,本文得到了荷电稳态黑洞的修正熵并发现修正项同样包括Bekenstein-Hawking熵的对数项和倒数项.
Based on the work of Majhi et al., we investigate the entropy correction to the Kerr-Newman black hole beyond semiclassical approximation by the Dirac equation. Because in the units G = c = ks = 1, the Planck constant is proportional to the square of Planck Length, Planck Mass and Planck Charge, the proportionality parameter of quantum correction terms to the semiclassical term of action is taken as (Mrh - Q^2/2)^-1. With the aid of the differential form of horizon equation and the first law of black hole thermodynamics, we obtain the corrected entropy of charged stationary black hole and find that the correction terms also include the logarithmic and inverse terms to Bekenstein-Hawking entropy.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2010年第1期92-96,共5页
Acta Physica Sinica
基金
四川省自然科学青年基金(批准号:09ZB070)资助的课题~~