期刊文献+

基于Hénon混沌与动态非线性方程的改进粒子群优化算法 被引量:2

Improved particle swarm optimization based on Hénon chaos and dynamic nonlinear equations
下载PDF
导出
摘要 为解决粒子群优化算法易于陷入局部最优问题,提出了两种新方法并行改进粒子群优化算法惯性权重:对适应度值比平均值差的粒子,用所设计的动态Hénon混沌映射公式调整惯性权重,在复杂多变的环境中逐步摆脱局部最优值,动态寻找全局最优值;对适应度值好于或等于平均值的粒子,用提出的动态非线性方程调整惯性权重,在保存相对有利环境的基础上逐步向全局最优处收敛。两种方法前后相辅相成、动态协调,使两个动态种群相互协作、协同进化。采用不同复杂程度的标准测试函数进行实验,结果发现,该算法在不同情况下都超越了同类著名改进粒子群优化算法。 To solve the premature problem of particle swarm optimization, introduced'two new methods to improve particle swarm optimization : when the fitness values of some particles were worse than the average, devised the dynamic Hénon chaotic map formula to modify the inertia weight, which could make particles break away from the local optima and search the global optima dynamically. On the contrary, when the fitness values of some particles were better than or equal to the average, employed the new introduced dynamic nonlinear equations to modify the inertia weight, which could retain favorable conditions and converge to the global optima continually. Two methods coordinated with each other dynamically, and made two dynamic swarms cooperate to evolve. Some well-known benchmark functions with different complexities were employed to test the performance of the new introduced algorithm. Experimental results demonstrate that the new introduced methods outperformed several other famous improved particle swarm optimization algorithms in different situations.
出处 《计算机应用研究》 CSCD 北大核心 2010年第1期92-95,共4页 Application Research of Computers
基金 广东省自然科学基金资助项目(8451009101001040)
关键词 粒子群优化算法 惯性权重 动态Hénon混沌映射公式 动态非线性方程 particle swarm optimization (PSO) inertia weight dynamic Hénon chaotic map formula dynamic nonlinear equations
  • 相关文献

参考文献15

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization[ C]// Proc of IEEE International Conference on Neural Networks. Perth, Australia: [ s. n. ] , 1995 : 1942-1948.
  • 2EBERHART R C, SHI Y. Particle swarm optimization: developments, applications and resources [ C ]//Proc of Congress on Evolutionary Computation. Piscataway, NJ :IEEE, 2001:81-86.
  • 3EBERHART R C, SHI Y. Tracking and optimizing dynamic systems with particle swarms [ C ]//Proc of IEEE Congress on Evolutionary Computation. Piseataway, NJ:IEEE, 2001:94-100.
  • 4COELHO L S, LEE C S. Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches[J]. International Journal of Electrical Power and Energy Systems, 2008,30(5) :297-307.
  • 5JIANG Chuan-wen, BOMPARD E. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization[ J]. Mathematics and Computers in Simulation, 2005,68 ( 1 ) :57-65.
  • 6刘怀亮.模拟退火算法及其改进[J].广州大学学报(自然科学版),2005,4(6):503-506. 被引量:15
  • 7刘怀亮,刘淼.一种混合遗传模拟退火算法及其应用[J].广州大学学报(自然科学版),2005,4(2):141-145. 被引量:24
  • 8SHI Y, EBERHART R C. A modified particle swarm optimizer[ C]// Proc of IEEE International Conference on Evolutionary Computation. Piscataway, NJ : IEEE, 1998:69- 73.
  • 9SHI Y, EBERHART R C. Empirical study of particle swarm optimization [ C ]//Proc of IEEE International Congress Evolutionary Computation. Washington DC :IEEE, 1999 : 1945-1950.
  • 10CLERC M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [ C ]//Proc of 1999 Congress on Evolutionary Computation. Piscataway, N J: IEEE Service Center, 1999 : 1951-1957.

二级参考文献8

  • 1Garrison W Greenwood, Ajay Gupta, Scheduling task in multiprocessor system using evolutionary strategies[A]. The International Joint Conference on Neural Networks[C]. Japan : Nagoya, 1993. 216 - 224.
  • 2Fogel D B. System identification through simulated evolution: a machine learning approach to modeling[M]. America: Ginn Press,1991.
  • 3Grefenstelle J J, Gopal R, Rosmaita B, et al. Genetic algorithms for the traveling salesman[A]. International Conf of genetic algorithm and their applieatiorrs[C]. America: Pittsburgh, 1985. 359-371.
  • 4Hopfleld J J, Tank D W, Neural computation of decisions in optimization problems[J], Biological Cybem, 1985, 52:249 - 260.
  • 5Goldberg D E. Genetic algorithms in search,optimize and machine leaming[M]. New York: Addiso Wes-ley, 1993. 372- 385.
  • 6Metropolis N, Equations of state calculations by fast computing machines[J], J Chem Phys, 1953, (21): 1087-1091.
  • 7Kirkpatrick S, Gelatt C D, Vechi Jr M P. Optimization by simulated annealing[J]. Science, 1983, (220): 671-680.
  • 8Stuart G,Donald G. Stochastic relaxation gibbs distributions, and the buyesian restoration of images[J]. IEEE Trans On PAMI,1984,(6): 721-741.

共引文献35

同被引文献21

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:200
  • 2牛强,王志晓,陈岱,夏士雄.基于SVM的中文网页分类方法的研究[J].计算机工程与设计,2007,28(8):1893-1895. 被引量:22
  • 3van den BERGH F, ENGELBREEHT A P. A new locally convergent particle swarm optimizer[ C]// Proceedings of the IEEE International Conference on Systems. Washington, DC: IEEE Computer Society, 2002:3-6.
  • 4van den BERGH F. An analysis of particle swarm optimizers[D]. Pretoria, South Africa: University of Pretoria, 20021.
  • 5RIGET J, VESTERSTROEM J S. A diversity-guided particle swarm optimizer - the ARPSO [R]. Aarhus, Denmark: University of Aarhus, Department of Computer Science, 2002.
  • 6EBERHART R C,KENNEDY J.A new optimizer using particle swarm theory[C] //Proc of the 6th International Symposium on Micro Machine and Human Science.[S.l.] :IEEE Press,1995:39-43.
  • 7TAN De-kun,LUO Wen-hai,LIU Qing.Multi-objective particle swarm optimization algorithm for engineering constrained optimization problems[C] //Proc of IEEE International Conference on Granular Computing.[S.l.] :IEEE Press,2009:523-528.
  • 8中国科学院计算所.ICTCLAS分词系统[EB/OL].(2009-02-19)[2010-04-20].http://www.ictclas.org/.
  • 9YANG Yi-ming,PEDERSEN J O.A comparative study on feature selection in text categorization[C] //Proc of the 14th International Conference on Learning.San Francisco:Morgan Kaufmann Publishers,1997:412-420.
  • 10HOLLAND J H.Genetic algorithm and classifier system:foundations and future directions[C] //Proc of the 2nd International Conference on Genetic Algorithm.1987:82-89.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部