期刊文献+

多标号图像分割及其应用 被引量:3

Application of multi-label image segmentation
下载PDF
导出
摘要 介绍了一种基于多标号的半自动化图像分割方法。在分割过程中,首先依据高斯权值函数,针对待处理图像建立一个加权图;然后在原始图像中分别标记出属于不同目标区域的像素点;之后,任意选择图像中没有被标号的像素点为作起点,依据所创建的加权图进行随机游走,计算出从当前出发点游走至各个标记像素的概率。通过这种方法,针对图像中未被标号的像素,可以获得一个概率分布图,其中每个概率分布表示未标号像素随机游走到各个标记像素的概率,取概率最大的标记像素作为其所属目标,则可得到一个高质量的分割图像。 A new approach of semi-automated image segmentation based on muhi-label pixel was presented. First, a weighted graph of un-processing image was defined by Gaussian weighting function. Second, the pixels of different goal region were labeled differently in source image. An un-labeled pixel was randomly selected as the starting point. Then, random walking started from this location according to the defined weighted graph, calculating the probability from the start point to each pre-labeled pixels. A probability graph toward each unlabeled pixel was obtained, which represented all probabilities that each unlabeled pixel randomly reached each of pre-labeled pixels. The greatest probability was taken as its objective, therefore, a high-quality image segmentation could be obtained.
出处 《计算机应用》 CSCD 北大核心 2010年第1期29-30,35,共3页 journal of Computer Applications
基金 湖南省教育厅项目(计090552)
关键词 半自动化 图像分割 随机游走 多标号 semi-automation image segmentation random walker multi-label
  • 相关文献

参考文献9

  • 1王爱民,沈兰荪.图像分割研究综述[J].测控技术,2000,19(5):1-6. 被引量:115
  • 2FALCAO A X, JAYARAM K U, MIYAZAWA F K. An ultra-fast user-steered image segmentation paradigm: Live wire on the fly[J]. IEEE Transactions on Medical Imaging, 2000, 19(1) : 55 -62.
  • 3ZHU X, LAFFERTY J, GHAHRAMANI Z. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions[ EB/OL]. [ 2009 - 04 - 20]. http://pages. cs. wise. edu/-jerryzhu/pub/zglactive, pdf.
  • 4KAKUTANI S. Markov processes and the Dirichlet problem[ C]// Proceedings of the Japan Academy. Tokyo, Japan: [ s. n. ], 1945: 227 - 233.
  • 5DOYLE P, SNELL L. Random walks and electric networks[ EB/ OL]. [ 2009 -04 -20]. http://webee. teehnion, ac. iL/ -adam/ FUN/RWEN. pdf.
  • 6BOYKOV Y, VEKSLER O, ZABIH R. A new algorithm for energy minimization with discontinuities [ C]// Proceedings of 2nd International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. London: Springer-Verlag, 1999:205 -220,.
  • 7SHI J, MALIK J. Normalized cuts and image segmentation[ EB/ OL]. [2009 - 04 - 20]. http://www, cs. berkeley, edu/- malik/ papers/SM-ncut, pdf.
  • 8GRADY L, SCHWARTZ E. Anisotropic interpolation on graphs: The combinatorial Dirichlet problem[ EB/OL]. [ 2009 - 04 - 22]. http://cns-web, bu. edu/-lgrady/grady2003anisotropic-TR, pdf.
  • 9ROTHER C, KOLMOGOROV V, BLAKE A. Interactive foreground extraction using iterated graph cuts[ EB/OL]. [ 2009 -04 -25]. http://www, cg. inf. ethz. ch/teaching/former/seminar/handouts/ Caluori_GrabCut. pdf.

二级参考文献16

共引文献114

同被引文献7

  • 1CHENG Heng-da, JIANG Xi-hua, SUN Ying, et al. Color image segmentation: advances and prospects [ J ]. Pattern Recognition, 2001,34(12) :2259-2281.
  • 2CHEN Fan, TANAKA K, HORIGUCHI T. Image segmentation based on bethe approximation for Gaussian mixture model[ J ]. Interdisciplinary Information Sciences,2005,11 ( 1 ) : 17-29.
  • 3YEDIDIA J, FREEMAN W, WEISS A. Generalized belief propagation[J]. Advances in Neural Information Processing Systems, 2000,13(7) :689-695.
  • 4YEDIDIA J S, FREEMAN W T,WEISS Y. Constructing free-energy approximations and generalized belief propagation algorithms [ J ]. IEEE Trans on Information Theory,2005,51 (7) :2282-2312.
  • 5李浩然,孙维国.数字图像轮廓特征提取过程研究[J].微计算机应用,2010,31(11):52-56. 被引量:8
  • 6林晓敏,桂婷,胡同森.基于重心的一种灰度图像边缘检测算法[J].计算机系统应用,2010,19(12):235-237. 被引量:4
  • 7苗张木,唐小兵,陶德馨,李永信,陈冰泉,王志坚,郑理.金属焊缝CTOD试样疲劳裂纹前沿平直度研究[J].武汉理工大学学报,2002,24(12):54-57. 被引量:8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部