期刊文献+

基于Delaunay三角剖分生成Voronoi图算法 被引量:19

Voronoi diagram generation algorithm based on Delaunay triangulation
下载PDF
导出
摘要 针对Delaunay三角网生长算法和间接生成Voronoi图算法构网效率不高的问题,提出了一种Delaunay三角网生长法间接生成Voronoi图的改进算法。该算法以点集凸壳上一边快速生成种子三角形,定义了半封闭边界点的概念,在三角形扩展过程中动态删除封闭点及半封闭边界点,加快Delaunay三角网生成速度。然后又定义了有序目标三角形的概念,该算法能迅速查找点的有序目标三角形,生成无射线的Voronoi图;考虑凸壳上点的特性,借助三个无穷点生成带射线的Voronoi图。通过实验结果分析表明,改进的算法执行效率有了很大提高。 Considering the problem that the algorithm of building auto-connected Delaunay triangulation and indirectly building Voronoi diagram is of low efficiency, an improved Voronoi generation algorithm based on auto-connected Delaunay triangulation was presented. The seed triangle was rapidly generated by one side of the convex hull. The notion of half closed- border-point was proposed. The algorithm removed closed-points and half closed-border-points in the process of expanding triangle and improved the speed of generating Delaunay triangulation. Then, the notion of ordered target triangle was defined. It quickly found ordered target triangles and generated the non-ray Voronoi diagram. Considering the characteristics of convex hull, a ray Voronoi diagram was generated by three infinite points. The experimental results show that the efficiency of the improved algorithm is obviously improved.
出处 《计算机应用》 CSCD 北大核心 2010年第1期75-77,97,共4页 journal of Computer Applications
关键词 DELAUNAY三角剖分 VORONOI图 凸壳 计算几何 Delaunay triangulation Voronoi diagram convex hull computational geometry
  • 相关文献

参考文献7

二级参考文献68

  • 1余翔宇,孙洪,余志雄.改进的二维点集凸包快速求取方法[J].武汉理工大学学报,2005,27(10):81-83. 被引量:22
  • 2黄波,李蓉蓉.泰森多边形及其在等深面生物量计算中的应用[J].遥感技术与应用,1996,11(3):35-39. 被引量:18
  • 3[48]Ponamgi, M K, et al. Incremental algorithms for collision detection between solid models[J]. IEEE Transactions on Visualization and Computer Graphics, 1997, 3(1): 51~64.
  • 4[49]Fujita K, et al. Voronoi diagram based cumulative approximation for engineering optimization[EB/OL].http://syd.meim.eng.osaka-u.ac.jp/papers/2000/09_AI AA_co.ps.
  • 5[50]Yahagi H, et al. The forest method as a new parallel tree method with the sectional Voronoi tessellation[EB/OL]. http://www.mpia-hd.mpg.de/theory/mori/preprints/ymy99 .ps.gz.
  • 6[51]Allard D. Non parametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation[EB/OL].http//www. stat.washington.edu/tech.reports/tr293R.ps.
  • 7[52]Papadopoulo E, Lee D T. Critical area computation-a new approach[EB/OL]. http://web.eecs.nwu.edu/~dtlee/ISPD98.ps.
  • 8[53]Swanson K, et al. An optimal algorithm for roundness determination on convex polygons[J], Computational Geometry: Theory & Applications, 1995, 5:225~235.
  • 9[54]Kaplan C. Voronoi diagrams and ornamental design[EB/OL].http://www. cs.washington.edu/homes/csk/tile/papers/Kaplan_isama1999.pdf.
  • 10[6]Albers G, et al. Voronoi diagrams of moving points[J].International Journal of Computational Geometry & Applications, 1998, 8(3): 365~380.

共引文献122

同被引文献174

引证文献19

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部