期刊文献+

Effects of SiN_x on two-dimensional electron gas and current collapse of AlGaN/GaN high electron mobility transistors 被引量:1

Effects of SiN_x on two-dimensional electron gas and current collapse of AlGaN/GaN high electron mobility transistors
下载PDF
导出
摘要 SiNx is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiNx passivation film on both two-dimensional electron gas characteristics and current collapse of A1GaN/GaN HEMTs are investigated. The SiNx films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results. SiNx is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiNx passivation film on both two-dimensional electron gas characteristics and current collapse of A1GaN/GaN HEMTs are investigated. The SiNx films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期497-500,共4页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos. 60536020 and 60723002) the National Basic Research Program of China (Grant Nos. 2006CB302800 and 2006CB921106) the National High Technology Research and Development Program for Advanced Materials of China (Grant No. 2006AA03A105) the Major Project of Beijing Municipal Science and Technology Commission, China (Grant No. D0404003040321)
关键词 SiNx passivation plasma-enhanced chemical vapour deposition A1GaN/GaN het- erostructure current collapse SiNx passivation, plasma-enhanced chemical vapour deposition, A1GaN/GaN het- erostructure, current collapse
  • 相关文献

参考文献14

  • 1Baliga B J 1996 IEEE Trans. Electron Devices 43 1717.
  • 2Liu J, Zhou Y G, Zhu J, Lau K M and Chen K J 2006 IEEE Electron Device Lett. 27 10.
  • 3Chumbes E M, Smart J A, Prunty T and Shealy J R 2000 Proc. Int. Electron Device Meeting p385.
  • 4Yue Y Z, Hao Y, Zhang J C, Feng Q, Ni J Y and Ma X H 2008 Chin. Phys. B 17 1405.
  • 5Chang M J and Lee J L 2005 Appl. Phys. Lett. 85 172101.
  • 6Tan W S, Houston P A, Hill G, Airey R J and Parbook P J 2004 J. Electron Mat. 33 400.
  • 7Xi G Y, Ren F, Hao Z B, Wang L, Li H T, Jiang Y, Zhao W, Han Y J and Luo Y 2008 Acta Phys. Sin. 57 7238 (in Chinese).
  • 8Mittereder J A, Binari S C, Klein P B, Roussos J A, Katzer D S, Storm D F, Koleske D D, Wickenden A E and Henry R L 2003 Appl. Phys. Lett. 83 1650.
  • 9Bernat J, Wolter M, Javorka P, Fox A, Marso M and Korcto P 2004 Solid-State Electron. 48 1825.
  • 10Binari S C, lkossi K, Roussos J A, Kruppa W, Park D, Dietrich H B, Koleske D D, Wickenden A E and Henry R L 2001 IEEE Trans. Electron Devices 48 465.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部