期刊文献+

基于群体智能的多机器人任务分配 被引量:13

Multi-robot task allocation based on swarm intelligence
下载PDF
导出
摘要 针对具有松散和紧密耦合型任务的大规模多机器人系统,研究了基于群体智能的任务分配方法。系统采用层次结构,高层用蚁群算法实现松散耦合型任务分配的寻优,提出逆转分配思想让蚂蚁代表任务,为每个任务选择任务的承担者。底层分别提出了基于蚁群、粒子群蚁群和量子蚁群实现机器人联盟的形成——产生紧耦合型任务解,并进行仿真。仿真结果表明,基本蚁群算法得到的解质量最差;粒子群蚁群算法得到的分配解最好,但是运算时间最长;量子蚁群算法得到的解稍次于粒子群蚁群算法,但分配时间比另两种算法减少了一半。因此,在大规模的多机器人任务分配中,量子蚁群算法具有更强的适用性。 The task allocation was studied based on the swarm inteeligence for the large-scale multi- robot system with loose-and tight-coupled tasks adopting the hierarchial architecture. In the high level, the ant colony algorithm was employed to find the optimal allocation of the loose-coupled tasks, namely, based on the reverse distribution idea, taking each ant to form a task, an undertaker was chosen for every task. In the low level, the coalition formation algorithms based on the ant colony optimization(ACO), the particle swarm and ant colomy optimization(PSACO), or the quantum-inspised ant colony optimization (QACO) was proposed respectively for performin a tight-coupled task. Simulations were performed and results showed that PSACO provides the best solution, but its running time is the largest; QACO is a little inferior in solution quality to PSACO, however,it needs only a half time of the 2 other methods. Therefore, QACO appears more suitable for the task allocation of the large-scale multi-robot system.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第1期123-129,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60573067)
关键词 自动控制技术 任务分配 机器人联盟形成 蚁群优化 粒子群蚁群优化 量子蚁群优化 automatic control technology task allocation robot coalition formation ant colony optimization particle swarm and ant colony optimization quantum-inspired ant colony optimization
  • 相关文献

参考文献20

  • 1张嵛,刘淑华.多机器人任务分配的研究与进展[J].智能系统学报,2008,3(2):115-120. 被引量:31
  • 2Parker L E. ALLIANCE: an architecture for fault tolerant multirobot cooperation[J]. IEEE Transactions on Robotics and Automation, 1998, 14 (2): 220-240.
  • 3Werger B, Mataric M J. Broadcast of local eligibility: behavior based control for strongly cooperative multi-robot teams[C]// Proceedings of Autonomous Agents, 2000 : 21-22.
  • 4Fang Tang, I.ynne E P. ASyMTRe: automated synthesis of multi-robot task solution through software reconfiguration[C]// Proc of IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005 : 1501-1508.
  • 5Zlot R, Stentz A, Dias M B,et al. Multi-robot exploration controlled by a market eeonomy[C]//Proc of the IEEE intl Conf on Robotics and Automation, 2002 : 3016-3023.
  • 6Luiz Chaimowicz, Mario F M Campos, Viiay Kumar. Dynamic role assignment for cooperative tobots[C]// Proc of the IEEE Intl Conf on Robotics and Automation, 2002 : 293-298.
  • 7Dias M B. TraderBots: a new paradigm for robust and efficient multirobot coordination in dynamic environments [D]. Pittsburgh: Robotics Institute, Carnegie Mellon University, 2004.
  • 8Botelho S, Alami R. M+: a scheme for multi-robot cooperation through negotiated task allocation and aehievement[C]//Proc IEEE Int Conf Robot Automat, 1999 : 1234-1239.
  • 9Gerkey B P, Mataric M J. Sold!: auction methods for multirobot coordination[C]// IEEE Transactions on Robotics and Automation,2002: 758-786.
  • 10Sanem Sariel, Tucker Balch. A distributed multi-robot cooperation framework for real time task achievement[C]//Distributed Autonomous Robotic Systems, Tokyo: Springer,2006 : 187-196.

二级参考文献35

  • 1张国平,王正欧,袁国林.用于约束非线性全局优化的混沌退火神经网络(英文)[J].Transactions of Tianjin University,2001,7(3):141-146. 被引量:1
  • 2高平安,蔡自兴.Multi-robot task allocation for exploration[J].Journal of Central South University of Technology,2006,13(5):548-551. 被引量:3
  • 3VARELA G N, SINCLAIR M C. Ant colony optimization for virtual--wavelength --path routing and wavelength allocation[A]. Proceedings of the 1999 Congress on Evolutionary Computation [C]. Washington DC: IEEE, 1999. 1809--1816.
  • 4BAUER A, BULLNHEIMER B, HARTL R F, STRAUSSC. An ant colony optimization approach for the single machine total tardiness problem[A]. Proceedings of the 1999 Congresson Evolutionary Computation [C]. Washington DC: IEEE,1999. 1445-- 1450.
  • 5KRIEGER MICHAEL J B, et al. Ant--like task allocation and recruitment in cooperative robots[J]. Nature, 2000,406:39--42.
  • 6HOOGEVEEN J A, LENSTRA J K, VELTMAN B. Preemptive scheduling in a two--stage multiprocessor flow shop is NP--hard[J]. European Journal of Operational Research, 1996,89(1): 172--175.
  • 7DUDEK R A, et al. The lessons of flowshop scheduling research[J]. Operations Research, 1992, 40(1):7--13.
  • 8LINN R, ZHANG Wei, Hybrid flowshop seheduling:a survey[J]. Computers & Industrial Engineering, 1999,37(1-- 2) : 57--61.
  • 9CAMAZINE S, et al. Self--organization in biological systems[M]. Princeton USA: Princeton University Press, 2001.
  • 10BONABEAU E, DORIGO M, THERAULAZ G. Inspiration for optimization from social Insect behavior[J]. Nature, 2000,406:39--42.

共引文献133

同被引文献127

引证文献13

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部