期刊文献+

基于视频的车辆检测与跟踪算法研究 被引量:5

Vehicle Detection and Tracking Based on Video
下载PDF
导出
摘要 基于视频的车辆检测以及车辆跟踪是智能交通系统中的重要部分。本文在混合高斯背景模型的基础上,通过差分法分割出检测目标,利用检测目标的位置信息和色彩信息,找到与之最匹配的目标轨迹,从而实现车辆的跟踪。实验表明,该方法具有很高的检测与跟踪效率,同时能够满足智能交通系统的适时性要求。 Vehicle detection and tracking based on video is an important part of intellect traffic system. On the purpose of finding the best matching trajectory, this paper proposed a method that utilizes both position information and color information of detected object through background subtraction, based on Gaussian mixture model. Experimental result shows that method possesses higher efficiency in vehicle detection and tracking.
作者 蔡力
出处 《微计算机应用》 2010年第1期39-44,共6页 Microcomputer Applications
关键词 视频检测 混合高斯背景 HSV颜色匹配 车辆跟踪 video detection, Gaussian mixture model, HSV - color matching, vehicle tracking
  • 相关文献

参考文献5

  • 1Pankaj Kumar, Surendra Ranganath, Huang Weimin, et al. Framework for real - time behavior interpretation from traffic video[ J ] IEEE Transactions on Intelligent Transportation Systems, 2005,6( 1 ) :43 -53.
  • 2D. Kotler, K. Daniilidis. Model - based Object Tracking in Monocular Image Sequences of Road Traffic Scenes[J]. International Journal of Computer Vision, 10 1993. 181 -257.
  • 3Stauffer C, Grimsom W. Adaptive background mixture models for real- time tracking[ C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, Colorado, 1999, vol. 2, 246 -252.
  • 4Cucchiara R, Grana C, Piccardi M. Improving shadow suppression in moving object detection with HSV color information [ A ]. In: Proceedings of IEEE Intelligent Transportation Systems Conference[ C] , Oakland ,CA, USA,2001,334 -339.
  • 5Zhang Lei, Lin Fuzong, Zhang Bo. A CBIR method based on colorspatial feature. Proceeding of the IEEE Region 10 conference ( TENCON90), 1999,166 - 169.

同被引文献44

  • 1李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 2张晖,董育宁.基于视频的车辆检测算法综述[J].南京邮电大学学报(自然科学版),2007,27(3):88-94. 被引量:25
  • 3Simon Denman, Vinod Chandran, Sridha Sridharan. An adaptive optical flow technique for person tracking systems [ J ]. Pattern Recognition Let- ters ,2007,28(10) : 1232 - 1239.
  • 4Jayabalan E, Krishnan Dr A, Pugazendi R. Non rigid object tracking in aerial videos by combined snaked and optical flow technique [ J ]. Com- puter Graphics,Imaging and Visualisation,2007,21 (6) :388 -396.
  • 5Andres Bruhn, Jochim Weieker. Lucas-Kanade Meets Horn-Schunck: Combining Local and Global Optical Flow Methods [ J]. Intenational Journal of Computer Vision,2005,61 ( 3 ) :211 - 231.
  • 6Fernando W S P, Udawatta L, Pathirana P. Identification of moving ob- stacles with Pyramidal Lucas Kanade optical flow and K means cluste- ring[ C ]//ICIAFS 2007 Third International Conference on Information and Automation for Sustainability, December 4 - 6,2007 : 111 - 117.
  • 7Vitabile S,Pollaccia G,Pilato G,Sorbello F. Road signs recognition using a dynamic pixel aggregation technique in the HSV color space[A].2009.1-4.
  • 8Michael W. Schwarz,William B. Cowan,John C. Beatty. An Experimental comparison of RGB,YIQ, LAB,HSV,and opponent color models[J].{H}ACM TRANSACTIONS ON GRAPHICS,1987,(02):129-130.
  • 9Bu Qian,Sun Hongguang,Yang Danni,Zhang Jin,. A video target tracking method based on particle filterand the features of affine moment invariants[A].2009.3275-3278.
  • 10Gary Bradski,Adrian Kaehler. Learning open CV[M].Sebastopol:O'Reilly media,2008.252-255.

引证文献5

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部