期刊文献+

语音识别系统中语音活动性检测方法的研究 被引量:2

Research of Methods of Voice Activity Detection in Speech Recognition System
下载PDF
导出
摘要 针对当前语音活动性检测技术中传统方法普适性差和在低信噪比下检测性能陡降的问题,研究了在低信噪比强噪声(平稳和非平稳)环境下的语音时频增强相和基于改进谱熵能量的活动性检测相结合的语音识别系统的研究。首先估计背景噪声能量,分别对语音信号进行频域和时域的增强处理;然后利用一种鲁棒性更好的特征参数来判断语音端点。验证结果表明,该方法在平稳和非平稳两类噪声环境下均具有较好的检测性能,其应用范围更广泛。 Aiming at the difficulties of the poor universality and the precipitation of detection performance at low SNR in the field of voice activity detection, this paper proposes a new voice activity detection method in high intensity noise ( stationary noise and non - stationary noise) environments based on modified entropy -energy and time -frequency enhancement. First of all, it estimates the environment noise and enhances the speech signal in frequency - domain and time - domaio. Secondly, a good robust feature parameter is employed to detect the speech endpoint. The experimentation result indicates that the algorithm has a better detection performance in stationary noise and non - stationary noise environments and a good universality.
出处 《微计算机应用》 2010年第1期45-49,共5页 Microcomputer Applications
基金 国家自然科学基金资助项目(600776819)
关键词 活动性检测 鲁棒性 语音增强 谱熵 activity detection, robustness, speech enhancement, spectral entropy
  • 相关文献

参考文献9

  • 1Shin W H, Lee B S, Lee Y K, et al. Speech/non - speech classification using multiple features for robust endpoint detection [ A ]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing [ C ]. Istambul. Turkey: 2000, 3. 1399- 1402.
  • 2Martin A, Charlet D, Mauuary L. Robust speech/non - speech detection using LDA applied to MFCC [ A ]. IEEE International Conference on Acoustics, Speech, and Signal Processing [ C ] . Salt Lake City 2001.1. 685 - 688.
  • 3Kosmides E, Dermatas E, Kokkinakis G. Stochastic endpoint detection in noisy speech [ A]. International Worksho Pon Speech and Computer [ C] . Cluj - Napoca, Romania: 1997. 109 - 114.
  • 4Shen J L, Hung J W, Lee L S. Robust entropy - based endpoint detection for speech recognition in noisy environments [ A ]. International Conference on Spoken Language Processing [ C] . S·ney, Australia: 1998. 232 - 238.
  • 5Bou - Ghazale S E, Assaleh K. A robust endpoint detection of speech for noisy environments with application to automatic speech recognition[ A ]. IEEE International Conference on Acoustics, Speech, and Signal Processing [ C ]. Orlando, USA: 2002. 1753 - 1756.
  • 6Chen Xue - qin, Zhao He - ming. Fractal characteristic - based endpoint detection for whispered speech, proceedings of the 6th WSEAS 'International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22 -24,2006,193 -196.
  • 7李凯,徐强樯,左万利.基于分形特征变化的语音端点检测技术研究[J].小型微型计算机系统,2007,28(8):1523-1526. 被引量:4
  • 8余洪涌,赵庆卫,颜永红.一种基于滑动窗口的语音端点检测算法[J].微计算机应用,2006,27(6):641-645. 被引量:4
  • 9Huang L S, Yang C H. A novel approach to robust speech endpoint detection in car environments [ A] . IEEE International Conference on Acoustics, Speech and Signal Processing [ C] . Istambul , Turkey :2000, 3. 1751 -1754.

二级参考文献19

  • 1费珍福,王树勋,何凯.分形理论在语音信号端点检测及增强中的应用[J].吉林大学学报(信息科学版),2005,23(2):139-142. 被引量:10
  • 2国雁萌,潘接林,颜永红,韩疆,张建平.基于子带能量的自适应端点检测.全国人机语音通信学术会议,厦门:2003.
  • 3Javier Ramirez, Jose C, Segura, Carmen benitez, Angel de la Torre, Antonio Rubio. Efficient voice detection algorithms using long-term speech information. Speech Communication, 42 (2004): 271-287.
  • 4Mark Marzinzik and Birger Kollmeier. Speech Pause Detection for Noise Spectrum Estimation by Tracking Power Envelope Dynamics. IEEE Trans. Speech and Audio Processing, 2002,10(2)
  • 5Wang Bing-xi,Qu Dan,Peng Xuan.Practical fundamentals of speech recognition[M].Beijing:National Defense Industry Press,2005.
  • 6Shen Ya-qiang,Feng Geng-liang.Two end point detecting and filtering on low SNR speech signals based on short-time fractal dimension[J].Journal of Zhejiang Normal University (Nature Science Edition),1999,22(1):16-21.
  • 7Khurram Waheed,Kim Weaver,Fathi M Salam.A robust algorithm for detecting speech segments using an entropic contrast[C].45th IEEE International Midwest Symposium on Circuits and Systems,Vol 3.Oklahoma:2002,328-331.
  • 8Fei Zhen-fu,Wang Shu-xun,He Kai.Application of fractal theory in speech signal endpoint detection and speech enhancement[J].Journal of Jilin University (Information Science Edition),2005,23(2):139-142.
  • 9Philippe Renevey,Andrzej Drygajlo.Entropy based voice activity detection in very noisy conditions[C].7th European Conference on Speech Communication and Technology.Aalborg,Denmark:2001,1887-1890.
  • 10Jia-lin Shen,Jeih-weih Huang,Lin-shan Lee.Robust entropy-based endpoint detection for speech recognition in noisy environments[C].5th International Conference on Spoken Language Processing.Sydney,Australia:1998,p232-235.

共引文献6

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部