期刊文献+

基于最小二乘支持向量机的车型识别算法研究 被引量:9

Study on Vehicle Type Identification Algorithm Based on Least Squares Support Vector Machine
下载PDF
导出
摘要 以感应线圈车辆检测器检测数据为分析基础,给出了基于Bayes理论的感应曲线自适应特征提取流程和方法,对选取的12个统计特征指标进行提取和优选。选择了曲线宽度、最大值、波峰数量、最小波谷值和波谷比组成车型识别模型的特征输入向量,不仅降低了输入向量的维数,缩短了最小二乘支持向量机的训练时间,同时也可加快车型识别的分类速度,增强特征值的分类辨别能力,提高车型分类的可靠性。在提出的基于最小二乘支持向量机的车型识别算法中,采用了修剪算法,加快了计算速度,同时保持了良好的回归性能。通过实例分析证明:基于最小二乘支持向量机的车型识别算法可提高自学习能力和识别准确率。 On the basis of data from inductive coil, the induction curve adaptive characteristic pick-up process and method based on Bayes theory were presented. After picking-up and optimizing 12 selected statistic characteristics according to the method, curve width, inaximum value, wave crest number, least trough value and trough ratio were chosen to constitute the characteristic input vectors of vehicle type identification model. This could not only reduce the dimensions of input vectors and cut the training time of least squares support vector machine (IS-SVM), but also speed up the classification of vehicle type identification, improve eigenvalue' s identification capability and rise the reliability of vehicle type classification. The vehicle type identification algorithm based on IS-SVM, which adopted pruning algorithm, could speed up the calculation and keep well regression capability. Example analysis proves that the vehicle type identification algorithm based on IS-SVM would be able to enhance the self-learning capability and identify accuracy.
出处 《公路交通科技》 CAS CSCD 北大核心 2010年第1期101-105,共5页 Journal of Highway and Transportation Research and Development
基金 国家自然科学基金资助项目(50808050) 广西科学研究与技术开发计划资助项目(0719001-2)
关键词 智能运输系统 车型识别 最小二乘支持向量机 感应线圈 修剪算法 Intelligent Transport Systems vehicle type identification LS- SVM inductive coil pruning algo-rithm
  • 相关文献

参考文献10

二级参考文献21

  • 1郭桂蓉 谢维信.模糊模式识别[M].长沙:国防科技大学出版社,1993..
  • 2于濂.模糊模式识别和模糊图像处理及二次推理理论的研究及应用:学位论文[M].北京:北京师范大学数学系,1997..
  • 3VapnikVN著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 4于濂,模糊模式识别和模糊图象处理及二次推理理论的研究及应用,1997年
  • 5郭桂蓉,模糊模式识别,1993年
  • 6NelloCristianini JohnShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 7Suykens J A K,Gestel T Van,Brabanter J De et al. Least Squares Support Vector Machines[M].World Scientific,2002.
  • 8Suykens J A K,Lukas L,Vandewalle J.Sparse Least Squares Support Vector Machine Classifier[C].In:European Symposium on Artificial Neural Networks, Bruges Belgium, 2000-04: 37~42.
  • 9J A K Suykens,L Lukas,J Vandewalle. Sparse approximation using least squares support vector machines[C].In :IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 2000-05:Ⅱ757~Ⅱ760.
  • 10K Pelckmans,J A K Suykens,T Van Gestel et al.LS-SVMlab Toolbox User's Guide.http://www.esat.kuleuven.ac.be/sista/lssvmlab/,2003.

共引文献154

同被引文献54

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部