期刊文献+

基于量化的二维DCT优化算法研究 被引量:3

Fast algorithm of 2-D discrete cosine transform based on quantization
下载PDF
导出
摘要 DCT变换广泛应用于图像压缩算法中,在大多数情况下最有用的信息集中在DCT系数的低频序列中,而对那些经过量化后为零的系数进行计算,不但费时且计算量大幅增加。据此提出了两种新的二维DCT快速截取算法,使得计算一个8×8的二维DCT变换所需的乘法运算次数减少了60%,加法运算次数减少了77%。经过实验验证该算法在峰值信噪比PSNR值损失很少的情况下,显著地降低了算法的复杂度。 The Discrete Cosine Transform(DCT) has become more and more popular in practical digital image process.In general,the most useful coefficients of the DCT concentrate in the low frequency orders.It is consuming time and increasing calculation for the calculation of zero coefficients.According to the characteristic of the quantized coefficients,two new optimized algorithms are proposed for the computation of a 2-D discrete cosine transform in this paper.The calculation of coefficients of a 8×8 DCT only need 32 multiplications and 108 additions.The total number of multiplications is reduced 60%,and the total number of additions is reduced 77%.The results show that for practical situations,significant computation reductions can be achieved while causing negligible PSNR degradation.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第2期181-183,共3页 Computer Engineering and Applications
基金 内蒙古自然科学基金(No.200711020810)~~
关键词 离散余弦变换 量化 图像压缩 Discrete Cosine Transform(DCT) quantization image compression
  • 相关文献

参考文献3

二级参考文献16

  • 1Stefan Katzenbeisser,Fabien A P Petitcolas.Information Hiding Techniques for Steganography and Digital Watermarking[M].London:Artech House, 1999.
  • 2Kenneth R Casdeman.Digital Image Processing[M].New Jersey:Printice-Hall international, 1996.
  • 3Ingemar J Cox,Joe Kilian F.Thomson Leighton et al.Secure Spread Spectrum Watermarking[J].IEEE Transactions on Image Processing,1997;6(12):243-246.
  • 4Jana Dittmann,Petra Wohlmacher,Klara Nahrstedt.Using Cryptography and Watermarking Algorithm[J].IEEE Multimedia,2001;(4):54--65.
  • 5Lewis S,Knowles G.Images compression using the 2-D wavelet transform[J].IEEE Trans on Image Processing, 1992;1(1):244-250.
  • 6Barni M,Bartolini F,Piva A.Improved wavelet-based watermarking through pixel-wise masking[J].IEEE Trans on Image Processing, 2001;10(5):783-791.
  • 7Tao Liang,Kwan H K.2-D Real gabor transform[C]//.Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering,Edmonton,Alberta,Canada,1999:831-834.
  • 8Wexler J,Raz S.Discrete gabor transforms[J].Signal Processing,1990,21 (3):207-220.
  • 9Qian S,Chen D.Discrete gabor transforms[J].IEEE Trans Signal Processing,1993,21 (7):2429-2438.
  • 10Baxter R A.SAR image compression with the Gabor transform[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):574-588.

共引文献6

同被引文献46

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部