摘要
结合支持向量机(SVM)类间最大分类间隔和支持向量数据描述(SVDD)类内最小描述体积思想,提出一种新的学习机器模型——最大间隔最小体积球形支持向量机(MMHSVM).模型建立两个大小不一的同心超球,将正负类样本分别映射到小超球内和大超球外,模型目标函数最大化两超球间隔,实现正负类类间间隔的最大化和各类类内体积的最小化,提高了模型的分类能力.理论分析和实验结果表明该算法是有效的.
Inspired with the ideas of support vector machine (SVM) between-class maximal classfication margin and support vector data description (SVDD) within-class minimal description volume,a novel learning machine model,maximal-margin minimal-volume hypersphere SVM(MMHSVM),is proposed in this paper.Two different concentric hyperspheres are builted in the model,positive samples are packed in small hypersphere and negative samples are excluded outside large hypersphere.The between-class margin is maximized by model objective function,which realizes the maximization of between-class margin and the minimization within-class volume,and the model classification performance is improved.Theoretical analysis and experimental results show the effectiveness of the proposed method.
出处
《控制与决策》
EI
CSCD
北大核心
2010年第1期79-83,共5页
Control and Decision
基金
国家自然科学基金项目(60673190)
关键词
支持向量机
支持向量数据描述
类间最大分类间隔
类内最小描述体积
球形支持向量机
Support vector machine(SVM)
Support vector data description(SVDD)
Between-class maximal classfication margin
Within-class minimal description volume
Hypersphere support vector machine(HSVM)