期刊文献+

最大间隔最小体积球形支持向量机 被引量:19

Maximal-margin minimal-volume hypersphere support vector machine
原文传递
导出
摘要 结合支持向量机(SVM)类间最大分类间隔和支持向量数据描述(SVDD)类内最小描述体积思想,提出一种新的学习机器模型——最大间隔最小体积球形支持向量机(MMHSVM).模型建立两个大小不一的同心超球,将正负类样本分别映射到小超球内和大超球外,模型目标函数最大化两超球间隔,实现正负类类间间隔的最大化和各类类内体积的最小化,提高了模型的分类能力.理论分析和实验结果表明该算法是有效的. Inspired with the ideas of support vector machine (SVM) between-class maximal classfication margin and support vector data description (SVDD) within-class minimal description volume,a novel learning machine model,maximal-margin minimal-volume hypersphere SVM(MMHSVM),is proposed in this paper.Two different concentric hyperspheres are builted in the model,positive samples are packed in small hypersphere and negative samples are excluded outside large hypersphere.The between-class margin is maximized by model objective function,which realizes the maximization of between-class margin and the minimization within-class volume,and the model classification performance is improved.Theoretical analysis and experimental results show the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2010年第1期79-83,共5页 Control and Decision
基金 国家自然科学基金项目(60673190)
关键词 支持向量机 支持向量数据描述 类间最大分类间隔 类内最小描述体积 球形支持向量机 Support vector machine(SVM) Support vector data description(SVDD) Between-class maximal classfication margin Within-class minimal description volume Hypersphere support vector machine(HSVM)
  • 相关文献

参考文献2

二级参考文献26

  • 1Wenzelm F,Baur M,Fiedrich F.Potential of earthquake early warning systems.Natural Hazards,2001,23(2/3):407-416.
  • 2Wang H W.Research on early warning systems based on ARCH.Forecasting,1998(4):55-56.
  • 3Nadar N.Forecasting cyclical turning points with an index of leading indicators:a probabilistic approach.Forecasting,1993,12(3):215-225.
  • 4Yaon Y,Swles C T.A comparison of discriminant analysis versus artificial neural networks.Journal of Peratia Research Society,1993,44:51-60.
  • 5Jo H,Han I.Bankruptcy prediction using case-based reasoning,neural networks and discriminant analysis.Expert Systems with Application,1997,13(2):97-108.
  • 6Cristianini N,Shawe J.Introduction to Support Vector Machine.Cambridge:Cambridge University Press,1989.
  • 7Vapnik V N.Statistical Learning Theory,New York:Wiley,1998.
  • 8Xiao J H.Research on intelligent approach to feature extraction and pattern classification for device running state.Wuhan:Huazhong University of Science and Technology,2002.
  • 9Levin J,Nalebuff B.An introduction to vote-counting Schemes.Journal of Economic Perspectives,1995,19(1):3-26.
  • 10Isabelle Guyon, Jason Weston,Stephen Barnhill, et al. Gene selection for cancer classification using SVMs[J]. Machine Learning, 2002, 46(1-3): 389-422.

共引文献7

同被引文献187

引证文献19

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部