期刊文献+

The Elements in Crystal Bases Corresponding to Exceptional Modules

The Elements in Crystal Bases Corresponding to Exceptional Modules
原文传递
导出
摘要 According to the Ringel-Green theorem,the generic composition algebra of the Hall algebra provides a realization of the positive part of the quantum group.Furthermore,its Drinfeld double can be identified with the whole quantum group,in which the BGP-reflection functors coincide with Lusztig's symmetries.It is first asserted that the elements corresponding to exceptional modules lie in the integral generic composition algebra,hence in the integral form of the quantum group.Then it is proved that these elements lie in the crystal basis up to a sign.Eventually,it is shown that the sign can be removed by the geometric method.The results hold for any type of Cartan datum.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第1期1-20,共20页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China (No. 10631010) the NationalKey Basic Research Programme of China (No. 2006CB805905)
关键词 Crystal basis Hall algebra Exceptional module 模块 水晶 组成形式 量子群 几何方法 代数 对称性 BGP
  • 相关文献

参考文献22

  • 1Bernstein, I. N., Gel'fand, I. M. and Ponomarev, V. A., Coxeter functors and Gabriel's Theorem, Russ. Math. Surv., 28(2), 1973, 17-32.
  • 2Crawley-Boevey, W., Exceptional sequences of representations of quivers, Representations of Algebras, CMS Conference Proceedings, V. Dlab and H. Lenzing (eds.), Vol. 14, 1993, 117 124.
  • 3Chen, X. Q. and Xiao, J., Exceptional sequences in Hall algebras and quantum groups, Compositio Math., 117(2), 1999, 161 -187.
  • 4Dlab, V. and Ringel, C. M., Indecoposable representations of graphs and algebras, Mere. Amer. Math. Soc., 173, 1976, 1 -57.
  • 5Green, J. A., Hall algebras, hereditary algebras and quantum groups, Invent. Math., 120, 1995, 361-377.
  • 6Lusztig, G., Introduction on Quantum Groups, Birkhauser, Boston, 1993.
  • 7Lusztig, G., Braid group action and canonical bases, Adv. Math., 122(2), 1996, 237-261.
  • 8Lusztig, G., Affine quivers and canonical bases, Inst. Hautes Etudes Sci. Publ. Math., 76, 1992, 111- 163.
  • 9Lusztig, G., Canonical bases and Hall algebras, Representation Theories and Algebraic Geometry, A. Broer (ed.), Kluwer Academic Publishers, Dordrecht, 1998, 365-399.
  • 10Li, Y. Q. and Lin, Z. Z., AR-quiver approach to affine canonical basis elements, Y. Algebra, 318(2), 2007, 562-588.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部