期刊文献+

Comparisons of Metrics on Teichmller Space

Comparisons of Metrics on Teichmller Space
原文传递
导出
摘要 For a Riemann surface X of conformally finite type (g, n), let dT, dL and dpi (i = 1, 2) be the Teichmuller metric, the length spectrum metric and Thurston's pseudometrics on the Teichmutler space T(X), respectively. The authors get a description of the Teichmiiller distance in terms of the Jenkins-Strebel differential lengths of simple closed curves. Using this result, by relatively short arguments, some comparisons between dT and dL, dpi (i = 1, 2) on Tε(X) and T(X) are obtained, respectively. These comparisons improve a corresponding result of Li a little. As applications, the authors first get an alternative proof of the topological equivalence of dT to any one of dL, dp1 and dp2 on T(X). Second, a new proof of the completeness of the length spectrum metric from the viewpoint of Finsler geometry is given. Third, a simple proof of the following result of Liu-Papadopoulos is given: a sequence goes to infinity in T(X) with respect to dT if and only if it goes to infinity with respect to dL (as well as dpi (i = 1, 2)).
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第1期71-84,共14页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China (No. 10871211)
关键词 Length spectrum metric Teichmuller metric Thurston's pseudo-metrics 度量空间 简单证明 长度谱 黎曼曲面 封闭曲线 拓扑等价 胸苷 有限型
  • 相关文献

参考文献31

  • 1Sorvali, T., The boundary mapping induced by an isomorphism of covering groups, Ann. Acad. Sci. Fenn. Math., 526, 1972, 1-31.
  • 2Thurston, W. P., Minimal stretch maps between hyperbolic surfaces, 1986, preprint, arXiv:math. GT/9801039.
  • 3Papadopoulos, A., On Thurston's boundary of Teichmiiller space and the extension of earthquake, Topology Appl., 41(3), 1991, 147-177.
  • 4Papadopoulos, A. and Theret, G., On the topology defined by Thurston's asymmetric metric, Math. Proc. Cambridge Philos. Soc., 142(3), 2007, 487 -496.
  • 5Wolpert, S., The length spectra as Moduli for compact Riemann surfaces, Ann. of Math., 109(2), 1979, 323- 351.
  • 6Sorvali, T., On Teichmuller spaces of tori, Ann. Acad. Sci. Fenn. Math., 1, 1975, 7- 11.
  • 7Li, Z., Teichmuller metric and length spectrum of Riemann surface, Sci. China Set. A, 29, 1986, 802-810.
  • 8Liu, L. X., On the length spectrums of non-compact Riemann surface, Ann. Acad. Sci. Fenn. Math., 24, 1999, 11-22.
  • 9Shiga, H., On a distance defined by the length spectrum on Teichmiiller space, Ann. Acad. Sci. Fenn. Math., 28, 2003, 315 -326.
  • 10Kinjo, E., Teichmuller metric and length spectrum metric (in Japanese), Master Thesis, Tokyo Institute of Technology, 2008.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部