期刊文献+

Stochastic Fractional Anderson Models with Fractional Noises 被引量:1

Stochastic Fractional Anderson Models with Fractional Noises
原文传递
导出
摘要 The authors are concerned with a class of one-dimensional stochastic Anderson models with double-parameter fractional noises, whose differential operators are fractional. A unique solution for the model in some appropriate Hilbert space is constructed. Moreover, the Lyapunov exponent of the solution is estimated, and its HSlder continuity is studied. On the other hand, the absolute continuity of the solution is also discussed.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第1期101-118,共18页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China (No. 10871103)
关键词 Anderson models Fractional noises Lyapunov exponent Holder continuity Absolute continuity 参数分数 安德森 模型类 随机 Lyapunov指数 绝对连续性 噪声 希尔伯特空间
  • 相关文献

参考文献29

  • 1Azerad, P. and Mellouk, M., On a stochastic partial differential equation with non-local diffusion, Potential Anal., 27(2), 2007. 183- 197.
  • 2Bo, L. J., Jiang, Y. M. and Wang, Y. J., On a class of stochastic Anderson models with fractional noises, Stoch. Anal. Appl., 26(2), 2008, 256 -273.
  • 3Bo, L. J., Shi, K. H. and Wang, Y. J., On a nonlocal stochastic Kuramoto-Sivashinsky equation with jumps, Stoch. Dyn., 7(4), 2007, 439-457.
  • 4Bo, L. J., Jiang, Y. M. and Wang, Y. J., Stochastic Cahn-Hilliard equation with fractional noise, Stoch. Dyn., 8(4), 2008, 643-665.
  • 5Bo, L. J. and Wang, Y. J., Stochatic Cahn-Hilliard partial differential equations with Levy spacetime noises, Stoch. Dyn.6(2), 2006, 229-244.
  • 6Cardon-Weber, C., Cahn-Hilliard stochastic equation: existence of the solution and of its density, Bernoulli, 7(5), 2001, 777-816.
  • 7Dasgupta, A. and Kallianpur, G., Chaos decomposition of multiple fractional integrals and applications, Prob. Theory Relat. Fields, 115(4), 1999, 527-548.
  • 8Debbi, L. and Dozzi, M., On the solutions of nonlineax stochastic fractional partial differential equations in one spatial dimension, Stoch. Proc. Appl., 115(11), 2005, 1764-1781.
  • 9Eidelman, S. D. and Zhitarashu, N. V., Parabolic Boundary Value Problems, Birkha.user, Basel, 1998.
  • 10Hu, Y. Z., Heat equations with fractional white noise potentials, Appl. Math. Optim., 43(3), 2001, 221-243.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部