期刊文献+

非线性粘弹性波动方程初边值问题解的爆破

Blow up of the Solution for Initial-Boundary Value Problem of Nonlinear Viscoelastic Wave Equation
下载PDF
导出
摘要 研究一类非线性粘弹性波动方程的初边值问题,证明了该定解问题解的存在性及解在有限时间内爆破. The initial-boundary value problem of nonlinear viscoelastic wave equation is studied in this paper. The existence of the solution and the blow-up with finite time of the solution are obtained.
作者 李艳 李傅山
出处 《曲阜师范大学学报(自然科学版)》 CAS 2010年第1期13-18,共6页 Journal of Qufu Normal University(Natural Science)
基金 山东省自然科学基金(Q2008A08) 山东省高等学校科技计划项目基金(J09LA04) 曲阜师范大学科研基金(xj0711)
关键词 解的存在性 GALERKIN 爆破 压缩映射 viscoelastic Galerkin method blow up contraction mapping
  • 相关文献

参考文献10

  • 1Adams R A. Sobolev Spaces [M]. New York: Academic Press, 1975, 112 -116.
  • 2Li Fushan, Bai Yuzhen. Uniform Rates of Decay for Nonlinear Viscoelastic Marguerre - yon Karman Shallow Shell System, [ J]. J Math Anal Appl, 2009, 351 : 522-535.
  • 3Li Fushan. Existence and uniqueness of the solution to the the viscoelastic equations for Koiter shells [ J ]. Appl Math Comput, 2008, 200: 407-412.
  • 4Cavalcanti M M, Oquendo H P. Frictional versus viscoelastic damping in a semilinear wave equation [ J ]. SIAM J Control Optim, 2003, 42(4) : 1310-1324.
  • 5Cavalcanti M M, Domingos Cavalcanti V N, Soriano J A. Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping [ J ]. Electron J Differential Equations, 2002, 44 : 1-14.
  • 6Salim A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source[ J ]. Nonlinear Analysis, 2008, 69(8): 2589-2598.
  • 7Mohammad Kafini, Salim A Messaoudi. A blow up result in a Cauchy viscoelastic problem[ J]. Applied Math Letters, 2008, 21 : 549-553.
  • 8Yong Zhou. A blow - up result for a nonlinear wave equation with damping and vanishing initial energy in R^n[J]. Applied Mathematics Letters, 2005, 18:281-286.
  • 9Jong Yeoul Park, Sun Hye Park. Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation [ J ]. Czechoslovak Mathematical Journal, 2006, 56 ( 131 ) : 273-286.
  • 10李傅山,孔翠翠.热传导方程的基本解与正态分布密度函数[J].曲阜师范大学学报(自然科学版),2006,32(3):15-18. 被引量:3

二级参考文献3

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部