摘要
讨论了形如u_t=u_(xxx)+F(u,u_x)的非线性偏微分方程由可积系统{v_x=P(v,u,u_t,u_x,u_(xx)),v_t=Q(v,u,u_t,u_x,u_(xx_)定义的Baecklund变换u→v分类问题,给出光滑函数F,P和Q的显式表达式,得到函数F只能是如下形式F(u,u_x)=cu_x^3+F_1(u)u_x,其中c是常数,并且分3种情形确定光滑函数F和相应的函数P和Q.
We classify nonlinear partial differential equations of the form ut = uxxx + F ( u, ux ) which possess Baecklund transformations defined via associated integrable systems {vx=P(v,u,ut,ux,uxx),vt=Q(v,u,ut,ux,uxx) We determine such smooth functions F, P and Q. Our results show that the function F can only be of the form F(u,vx)=cu^3x+F1(u)ux where c is a constant and F1 is a smooth tunction.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2010年第1期49-54,共6页
Journal of Qufu Normal University(Natural Science)