期刊文献+

一类非线性偏微分方程Baecklund变换的分类

On Baecklund Transformations for a Class of Nonlinear Partial Differential Equation
下载PDF
导出
摘要 讨论了形如u_t=u_(xxx)+F(u,u_x)的非线性偏微分方程由可积系统{v_x=P(v,u,u_t,u_x,u_(xx)),v_t=Q(v,u,u_t,u_x,u_(xx_)定义的Baecklund变换u→v分类问题,给出光滑函数F,P和Q的显式表达式,得到函数F只能是如下形式F(u,u_x)=cu_x^3+F_1(u)u_x,其中c是常数,并且分3种情形确定光滑函数F和相应的函数P和Q. We classify nonlinear partial differential equations of the form ut = uxxx + F ( u, ux ) which possess Baecklund transformations defined via associated integrable systems {vx=P(v,u,ut,ux,uxx),vt=Q(v,u,ut,ux,uxx) We determine such smooth functions F, P and Q. Our results show that the function F can only be of the form F(u,vx)=cu^3x+F1(u)ux where c is a constant and F1 is a smooth tunction.
作者 杨瑜
出处 《曲阜师范大学学报(自然科学版)》 CAS 2010年第1期49-54,共6页 Journal of Qufu Normal University(Natural Science)
关键词 非线性偏微分方程 可积系统 BAECKLUND变换 nonlinear partial differential equation integrable system Baeeklund transformation
  • 相关文献

参考文献7

  • 1Byrnes S G. Baecklund transformations and the equation zxy = F(x,y,z) [J]. J Math Phys, 1976,17: 836-842.
  • 2McLaughlin D W, Scott A C. A restricted Baecklund transformation [J]. J Math Phys, 1973,14: 1817-1828.
  • 3Cao X, Wu H, Xu C. On Miura transformations among nonlinear partial differential equations [ J ]. J Math Phys, 2006,47: 835- 845.
  • 4Carlisle J E, Johnson C V, Pennington J S. Baecklund transformations, D-branes and fluxes in minimal type 0 strings[J]. J Phys ,2007, A40:12451-12462.
  • 5Gurboz N. Baecklund transformations of constant torsion curves in R [J]. Hadronic J, 2006,29: 213-220;.
  • 6Ma W, Wu H, He J. Partial differential equations possessing Frobenius integrable decompositions [ J ]. Phys Lett, 2007,A364: 29-32.
  • 7Wu H. On Baecklund transformations for nonlinear partial differential equations[J]. J Math Anal Appl, 1995,192:157-179.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部