期刊文献+

用属性单值表示的决策表简化算法及属性核计算 被引量:2

Decision Table Simplification Algorithm Based on Attribute Single-Valued Representation and Attribute Core Calculation
下载PDF
导出
摘要 为了降低决策表的存储空间,提高计算属性核的效率,提出了一种用属性单值表示的决策表简化算法.给出了条件属性的尺度、权值、属性单值和简化决策表的定义,以及尺度运算、权值运算、每个对象的条件属性值集合转换为一个属性单值的简化运算的严密公式,并通过决策表的可逆定理证明了简化决策表与原始决策表具有相同的信息表达能力.利用该算法简化决策表,条件属性的表达由多维降低为一维,从而有效地降低了决策表的存储空间.实验结果表明,简化决策表属性核的计算效率明显比现有决策表属性核的计算效率高,尤其是对于大型决策表,这种优势更加明显. To reduce the decision table of storage space,and improve the efficiency of computing attribute core,a decision table simplification algorithm based on attribute single-valued representation is proposed.The definitions of the size and weight of condition attribute,single-valued attribute and simplified decision table are presented.Then the rigorous calculation formulas of the size,weight and the condition attribute value set of every object converting into a single-value are given.The inverse theorem is proved,which indicates that the simplified decision table are endowed the same information with the original decision table.The storage space of decision table is reduced greatly because the multi-dimension attribute values are decreased to one dimension ones.Then the attribute core algorithm based on the simplified decision table is compared with that based on existing decision table.Experimental results show that the computing efficiency of the former is obviously higher than that of the latter,especially for large-scale decision table.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第1期87-90,共4页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2007AA04Z432) 苏州市工业科技攻关资助项目(SG0729)
关键词 决策表 属性单值表示 简化算法 属性核 decision table attribute single-valued representation simplification algorithm attribute core
  • 相关文献

参考文献8

二级参考文献35

  • 1杨明,孙志挥.改进的差别矩阵及其求核方法[J].复旦学报(自然科学版),2004,43(5):865-868. 被引量:71
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3张文修 等.Rough集理论与方法[M].北京:科学出版社,2001..
  • 4于洪 等.基于Rough Set理论的知识约简算法[J].计算机科学,2001,28(5):31-34.
  • 5Z Pawlak. Rough sets. International Journal of Computer and Information Science, 1982, 11 (5) : 341 - 356.
  • 6Z Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer Academic Publishers, 1991.
  • 7A Skowron. Rough sets and Boolean reasoning. In: W Pedrycz ed. Granular Computing: An Emerging Paradigm. New York:Phvsica-Verlag, 2001. 95-124.
  • 8W Ziako. Rough sets: Trends, challenges, and prospects. In: W Ziarko, Y Y Yao eds. Rough Sets and Current Trends in Computing(RSCTC 2000). Berlin: Springer-Verlag, 2001. 1-7.
  • 9A Skowron, C Rauszer. The discernibility matrices and functions in information system. In: R Slowinski ed. Intelligent DecisionSupport Handbook of Applications and Advances of the Rough Sets.Theory. Dordrecht: Kluwer Academic Publishers, 1992. 331-362.
  • 10X H Hu, N Cercone. Learning in relational databases: A rough set approach. International Journal of Computational Intelligence,1995, 11(2): 323-338.

共引文献358

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部