期刊文献+

对流扩散方程的数值流形格式及其稳定性分析 被引量:3

Numerical Manifold Scheme for Convection Diffusion Equation and Its Stability Analysis
下载PDF
导出
摘要 将流形方法应用于对流扩散方程的数值求解,建立了基于标准Galerkin加权余量法的定常无源对流扩散方程的数值流形格式,采用一维定常无源对流扩散方程证明了物理覆盖的覆盖函数取完全一阶多项式的标准流形格式具有绝对的数值稳定性,并通过与一维对流扩散方程有限元解、精确解的对比,对该数值流形格式的稳定性进行了验证.同时,将基于四节点矩形有限单元覆盖系统的数值流形格式应用于二维平行管道中定常热对流扩散问题的数值分析.结果表明:在小的单元Pe(Pe<2)时,流形解的精度较有限元方法显著提高;在较大单元Pe条件下,一阶多项式覆盖函数的标准流形格式虽然绝对稳定,但假扩散作用显著,得到的数值解与真实结果存在较大的偏差. The manifold method was employed to solve convection diffusion problems and the numerical manifold schemes for the convection diffusion equation were derived based on the Galerkin weighted residuals method.The standard manifold schemes with the first order polynomial function for physical cover were proved to be unconditionally stable,and the stability and adaptability of the present manifold schemes were confirmed by comparative analysis of numerical manifold solutions,finite element solutions and analytic solutions for one-dimensional steady source-free convection diffusion.The manifold schemes based on a four-node rectangular finite element cover system were used to simulate two-dimensional thermal convection-diffusion in pipe entry flow.The results show that the numerical manifold method can significantly improve computational accuracy at low element Peclet number(Pe〈2) compared with the finite element method.However,severe false diffusion effects at high element Peclet number will reduce computational accuracy and lead to erroneous results.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第1期117-124,共8页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50775044 50975050)
关键词 对流扩散 数值流形 数值稳定性 convection diffusion equation numerical manifold method numerical stability
  • 相关文献

参考文献23

  • 1PLETCHER R. Computational fluid mechanics and heat transfer[M]. 2nd ed. London, UK: Taylor Francis, 1997.
  • 2TORSTEN L. An upwind difference scheme on a novel Shishkin-type mesh for a linear convection-diffusion problem [J]. J Comput Appl Math, 1999, 110(1): 93-104.
  • 3WANG X, YANG Z F, HUANG G H. High-order compact difference scheme for convection diffusion problems on nonuniform grids[J]. J Eng Mech, 2005, 131(12): 1221-1228.
  • 4CHOU S H, KWAK D Y, VASSILEVSKI P S. Mixed upwinding covolume methods on rectangular grids for convection-diffusion problems[J]. Siam J Sci Comput, 1999, 21(1): 145-165.
  • 5高智,柏威.对流扩散方程的摄动有限体积(PFV)方法及讨论[J].力学学报,2004,36(1):88-93. 被引量:19
  • 6ZIENKIEWICZ O C, HEINRICH J C. The finite element method and convection problems in fluid mechanics[M]. New York, USA: John Wiley & Sons Inc. , 1978: 1-22.
  • 7HEINRICH J C, HUYAKORN P S, ZIENKIEWICZ O C, et al. An upwind finite element scheme for two- dimensional convective transport equations[J]. Int J Numer Methods Eng, 1977, 11(1): 131-143.
  • 8ALESSANDRO C, FRANCO R, ANDREA S. Quadratic Petrov-Galerkin finite elements for advective-reactive features in turbomachinery CFD[J]. Int J Numer Methods Heat Fluid Flow, 2005, 15(8): 894-925.
  • 9FRANCA L P, GUILLERMO H, ARIF M. Revisiting stabilized finite element methods for the advectivediffusive equation[J]. Comput Meth Appl Mech Engr, 2006, 195 (13/16): 1560-1572.
  • 10SASHIKUMAAR G, LUTZ T. An accurate finite element scheme with moving meshes for computing 3D- axisyrnmetric interface flows[J]. Int J Numer Methods Fluids, 2008, 57 (2): 119-138.

二级参考文献40

  • 1李树忱,程玉民.数值流形方法及其在岩石力学中的应用[J].力学进展,2004,34(4):446-454. 被引量:16
  • 2苏海东,谢小玲,陈琴.高阶数值流形方法在结构静力分析中的应用研究[J].长江科学院院报,2005,22(5):74-77. 被引量:13
  • 3石根华 裴觉民(译).数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 4Li Z Y,Int J Comput Appl Technol,2000年,13卷,6期,285页
  • 5陶文铨,计算传热学的近代进展,2000年
  • 6陶文铨,哈尔滨工业大学学报,1999年,31卷,15页
  • 7Kong H,Proceedings ASTP 10,1997年,845页
  • 8张政(译),传热与流体流动的数值计算,1989年
  • 9陶文铨,数值传热学,1988年,220页
  • 10Tao W Q,Numer Heat Transfer,1987年,11卷,491页

共引文献40

同被引文献10

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部