摘要
翻译模板自动获取是提高MT译文输出质量和领域适应能力的关键性因素。利用Tree-to-String方法抽取等价对,使用错误驱动的学习方法从中获取翻译模板并进行优化。将优化后的翻译模板用于一个基于转换的机器翻译系统中,同时使用"863"对话语料对其进行评测。实验结果表明:当使用自动获取并经优化的模板进行翻译时,开放测试语料的译文评测分数有一定程度的提高。
Automatic acquisition of translation templates is very important for MT system to improve its translation quality and its ability of adapting to new domain.In this paper,tree-to-string method is applied to extract translation equivalences.Error-driven learning method is used to acquire translation templates,A knowledge optimization tool is used to fiher translation templates.Then these templates are applied to a transfer-based MT system,and "863" dialog corpus is used as open test corpus.The experiment shows that when new acquired and optimized templates are used ,evaluation score for translation of open test corpus is improved.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第1期106-108,共3页
Computer Engineering and Applications
基金
国家自然科学基金No.60903082
江苏省现代企业信息化应用支撑软件工程技术研究开发中心项目(No.SX200907)
黑龙江省教育厅科学技术研究项目基金(No.11541045)
哈尔滨理工大学青年科学研究基金(No.2008XQJZ017)
哈尔滨理工大学青年拔尖创新人才~~
关键词
翻译模板
等价对
错误驱动
translation template
translation equivalence
error-driven