期刊文献+

基于混合聚类的本体分块与映射

Ontology block matching based on mixed clustering
下载PDF
导出
摘要 在本体的映射研究中,大规模本体之间的映射一直是研究的难点。当前主要采用分块的思想来处理大本体映射问题。而应用的分块算法只是针对给定分块数的情况。据此,提出基于混合聚类的大本体分块与映射方法(BMC)。该方法首先用语义扩散算法获得结点的语义信息,然后,运用混合聚类算法对本体进行自动分块,最后在各块中进行映射。通过实验结果及分析,表明BMC能取得较好的映射结果。 The research on ontology matching between two larger-scale ontologies is still a very challenging work.At present,a solution of block partition is the most popular way to solve the problem,however,the existing algorithm of block partition needs to appoint a fixed number of blocks.To solve this problem,a new block partition algorithm Based on Mixed Clustering (BMC) is proposed.The algorithm firstly uses the semantic diffuse method to obtain node's semantic message,and then uses the mixed clustering arithmetic to automatic partition.At last,mappings are discovered in blocks.The results of experiments are shown that BMC can acquire good matching results.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第1期116-118,159,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60433020 湖南省自然科学基金No.06JJ50142 湖南省国土资源厅科技计划项目(No.200718)~~
关键词 语义扩散 混合聚类 映射 semantic diffuse mixed clustering alignment
  • 相关文献

参考文献10

  • 1Ehrig M,Euzenat J.State of the art on ontology alignment [J]. Knowledge Web Deliverable, 2004,22(3 ) : 3-62.
  • 2Hu W,Qu Y Z.Block matching for ontologies[C]//Preeeedings of the 1st Asian Semantic Web Conference(Aswc'06),2006:300-313.
  • 3Hu W,Zhao Y Y,Qu Y Z.Partition-based block matching of large classhierarchies[C]//Proceedings of the 1st Asian Semantic Web Conference(ASWC'06), 2006:72-83.
  • 4Grau B,Parsia B,Sirin E,et al.Automatic partitioning of OWL ontologies using e-connections[C]//Proceedings of the 2005 International Workshop on Description Logics,2005.
  • 5Stuckenschmidt H,Klein M.Structure-based partitioning of large concept hierarchies[C]//Proceedings of the 3rd International Semantic Web Conference,2004: 289-303.
  • 6Ontology alignment evaluation initiative 2007 campaign[EB/OL]. http://oaei.ontologymatching.org/2007/.
  • 7Hu W,Cheng G,Zheng D D,et al.The results of falcon-AO in the OAEI 2006 campaign[C]//Proceedings of the 1st International Workshop on Ontology Matching,2006:118-125.
  • 8Hu W,Zhao Y Y,Li D,et al.Falcon-AO:Resuhs for OAEI 2007[C]// The 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference, 2007 : 160-167.
  • 9徐德智,郑春卉,K. Passi.基于SUMO的概念语义相似度研究[J].计算机应用,2006,26(1):180-183. 被引量:56
  • 10马帅,王腾蛟,唐世渭,杨冬青,高军.一种基于参考点和密度的快速聚类算法[J].软件学报,2003,14(6):1089-1095. 被引量:108

二级参考文献13

  • 1Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 2Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 3Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.
  • 4Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84.
  • 5Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105.
  • 6Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340.
  • 7Berchtold S, Bohm C, Kriegel H-P. The pyramid-technique: towards breaking the curse of dimensionality. In: Haas LM, Tiwary A,eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 142- 153.
  • 8Yu C, Ooi BC, Tan K-L, Jagadish HV. Indexing the distance: an efficient method to KNN processing. In: Apers PMG, Atzeni P,Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 421--430.
  • 9刘群 李素建.基于《知网》的词汇语义相似度计算[A]..第三届汉语词汇语义学研讨会[c].台北,2002..
  • 10NILES I, PEASE A. Towards a Standard Upper Ontology[A]. Proceedings of the 2nd International Conference on Formal Ontology in Information Systems ( FOIS-2001 )[C]. Maine, 2001.2 - 9.

共引文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部