期刊文献+

基于马氏距离的FCM图像分割算法 被引量:8

Mahalanobis distance-based FCM image segmentation algorithm
下载PDF
导出
摘要 基于模糊C均值聚类的图像分割是应用较为广泛的方法之一,但大多数模糊C均值聚类方法都是基于欧式距离,且存在运算时间过长等问题。提出了一种基于Mahalanobis距离的模糊C均值聚类图像分割算法。实验分析表明,提出的算法在保证分割质量的前提下,能较快提高分割速度。实验结果表明了该方法的有效性。 Fuzzy C-Means(FCM) clustering is one of well-known unsupervised clustering techniques,which has been widely used in automated image segmentation. However, most of fuzzy partition clustering algorithms are based on Euclidean distance function which can only be used to detect spherical structural clusters,and have disadvantages in runtime. This paper presents a Mahalanobis distance-based fuzzy C-means clustering image segmentation algorithm. Experiments show that the proposed method improves the segmentation runtime on the basis of segmentation qualities. Experimental results show that the proposed method is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第1期147-149,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.10771092 辽宁省博士启动基金(No.20081079) 辽宁省教育厅科学技术研究项目(No.2008347)~~
关键词 模糊C均值聚类 图像分割 马氏距离 fuzzy C-means clustering image segmentation Mahalanobis distance
  • 相关文献

参考文献7

  • 1Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].NY : Plenum, 1981.
  • 2Cheng H D,Jiang X H,Sun Y,et al.Color image segmentation:Advances and prospects[J].Pattern Recognition,2001,34(12):2259-2281.
  • 3Chen Song-can, Zhang Dao-qiang. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J].IEEE Trans on System,Man,and Cybernetics,2004, 34(4) : 1907-1916.
  • 4Rahimi S,Zargham M,Thakre A,et al.A parallel fuzzy C-means algorithm for image segmentation[C]//IEEE Annual Meeting of the Fuzzy Information, 2004,1 : 234-237.
  • 5Szilagyi L,Szilagyi S,Benyo Z.A modified fuzzy C-means algorithm for MR brain image segmentation[C]//LNCS 4633:Image Analysis and Recognition,2007:866-877.
  • 6Xiang S,Nie F,Zhang C S.Learning a Mahalanobis distance metric for data clustering a classification[J].Pattem Recognition,2008,41 (12) :3600-3612.
  • 7Babuska R,van der Veen P J,Kaymak U.Improved covariance estimation for Gustafson-Kessel clustering[C]//IEEE International Conference on Fuzzy Systems , 2002 :1081-1085.

同被引文献86

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部