期刊文献+

采用概率密度分布和粒子滤波的室内跟踪算法 被引量:2

Indoor tracking algorithm via probability distribution and particle filter
下载PDF
导出
摘要 提出了一种新的室内定位跟踪算法,采用了直方图法和核函数法估计参考点处的接收信号强度的概率分布,并将其作为该参考点的位置指纹,描述了该参考点处无线信道的特性;利用粒子滤波解决了非线性状态空间模型下的在线跟踪问题,仿真结果表明基于概率密度分布和粒子滤波的跟踪算法收敛速度快,且对环境变化不敏感,性能优于卡尔曼滤波算法。 This paper presents a new indoor location tracking algorithm,which uses signal strength probability distribution estimated by histogram method and kernel method to address the noisy wireless channel,and particle filter is used to deal with the nonlinear system model,which can approximate the optimal Bayesian estimate.Numerical simulation shows the new algorithm outperforms the tracking algorithm using Kalman filter.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第1期237-240,共4页 Computer Engineering and Applications
关键词 概率密度分布 粒子滤波 802.11 接收信号场强 跟踪算法 probability distribution particle filter 802.11 Received Signal Strength(RSS) tracking algorithm
  • 相关文献

参考文献10

  • 1Bahl P,Padmanabhan V N.RADAR:An in-building RF-based user location and tracking system[C]//IEEE INFOCOM, 2000:775-784.
  • 2Castro P,Chiu P,Kremenek T,et al.A probabilistic room location service for wireless networked environments[C]//UbiComp 2001, 2001 : 18-34.
  • 3Youssef M A,Agrawala A,Shankar A U,et al.A probabilistic clustering-based indoor location determination system,CS-TR-4350 and UMIACS-TR-2002-30[R].University of Maryland,2002.
  • 4Guvenc I.Enhancements to RSS based indoor tracking systems using kalman filters[D/OL].(2002).http://www.eece.unm.edu/-ismail/ ismail_tezl .pdf.
  • 5Helen M,Latvala J,Ikonen H,et al.Using calibration in RSSI- based location tracking system[C]//Proceedings of the 5th World Muhiconference on Circuits,Systems,Communications & Computers (CSCC20001), 2001.
  • 6Rappaport T S.Wireless communications:Principles and practice[M]. Upper Saddle River,New Jersey:Prentice Hall PTR,1996:93-95.
  • 7Kaemarungsi K,Krishnamurthy P.Properties of indoor received signal strength for WLAN location fingerprinting[C]//First Annual International Conference on Mobile and Ubiquitous Systems:Net- working and Services(MobiQuitous'04),2004:14-23.
  • 8Kaemarungsi K,K.rishnamurthy P.Modeling of indoor positioning systems based on location fingerprinting[C]//INFOCOM 2004:1012- 1022.
  • 9Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[C]//Proc Inst Elect Eng F, 1993,1400:107-113.
  • 10Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002,50(2).

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部