期刊文献+

k-DmeansWM:一种基于P2P网络的分布式聚类算法 被引量:6

k-DmeansWM:An Effective Distributed Clustering Algorithm Based on P2P
下载PDF
导出
摘要 传统的分布式聚类算法设立中心节点来实现聚类过程的控制,这不仅降低了系统可靠性,而且容易出现单点失效问题。提出一种基于P2P网络的分布式聚类算法k-Dmeans Without Master(简称k-DmeansWM),即采用对等分布的思想,摒弃中心节点,完全由对等节点来实现聚类过程的控制。理论分析与实验结果表明,k-DmeansWM在保证聚类准确性与效率的情况下,大大提高了系统的可靠性与扩展性。 Centralized master node is established in normal distributed clustering algorithms in order to control clustering processes, which reduce the system's reliability, single point failure problem occurs easily. The effective distribu ted clustering algorithm k-Dmeans Without Master(k-DmeansWM) based on peer-to-peer concepts,which abandons the master node,uses peer nodes to achieve controlling of the clustering process entirely. Both theoretical analysis and experimental results show that k-DrneansWM not only ensures the accuracy and efficiency of cluster cases, but also greatly improves the reliability and scalability of the system.
出处 《计算机科学》 CSCD 北大核心 2010年第1期39-41,共3页 Computer Science
基金 国家自然科学基金项目(60172012) 湖南省自然科学基金项目(03JJY3110)资助
关键词 分布式聚类 P2P 可靠性 Distributed clustering, P2P, Reliability
  • 相关文献

参考文献12

  • 1Han Jiawei, Kamber M. Data Mining: Concepts and Techniques [D]. San Francisco: Morgan Kaufmann Publishers, 2000: 232- 233.
  • 2Ester M,Kriegel H P,Sander J,et al. A density based algorithm of discovering clusters in large spatial databases with noise[C]//Proc. the 2nd Int'l Conf. Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996:226-231.
  • 3Zhang Tian, Ramakrishnan R, Livny M. BRICH:An efficient data clustering method for very large database[C]//Proc. ACM SIGMOD Int' 1 Conf. Management of Data. New York: ACM Press, 1996 : 73-84.
  • 4Guha S, Rostogi R, Shim K. CURE.. An efficient clustering algorithm for large databases[C]//Proc. The ACM SIGMOD Int'l Conf. Management of Data Seattle. New York: ACM Press, 1998 : 73-84.
  • 5Wang Wei, et al. STING:A statistical information grid approach to spatial data mining[C]//Proc. 23rd VLDB Conf. San Francisco: Morgan Kaufmann, 1997 : 186-195.
  • 6Kantabutra S,Couch A L. Parallel k-means clustering algorithm on Nows[J]. NECTEC Technical Journal, 1999,1 (1): 243- 247.
  • 7Prodio H, Lawrence H. Scalable clustering :A distributed ap - proach[C]//The IEEE Int'l Conf. on Fuzzy Systems. Budapest, Hungary, 2004.
  • 8Tasoulis D K, Vrahatis M N. Unsupervised distributed cluste - ring[C]//The IASTED Int'l Conf. on the Parallel and Distributed Computing and Networks. Innsbruek,2004.
  • 9Januzaj E, Kriegel H P, Pfeifle M. DBDC: Density based distributed clustering[C]//Proc, of the 9th Int'l Conf. on Extending Database Technology. Berlin: Springer, 2004 : 88-105.
  • 10郑苗苗,吉根林.DK-Means——分布式聚类算法K-Dmeans的改进[J].计算机研究与发展,2007,44(z2):84-88. 被引量:9

二级参考文献12

  • 1[1]A K Jain,M N Murty,P J Flynn.Data clustering:A review.ACM Computing Surveys,1999,31(3):265-323
  • 2[2]H Jiawei,M Kamber.Data Mining:Concepts and Techniques.San Francisco:Morgan Kaufmann,2000.232-233
  • 3[3]M Ester,H P Kriegel,J Sander,et al.A density based algorithm of discovering clusters in large spatial databases with noise.In:Proc of the 2nd Int'lConf on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996.226-231
  • 4[4]S Guha,R Rajeev,S Kyuseok.CURE:An efficient clustering algorithm for large databases.In:Proc of the ACM SIGMOD Int'lConf on Management of Data.New York:ACM Press,1998.73-84
  • 5[5]T Zhang,R Ramakrishnan,M Livny.Birch:An efficient data clustering method for very large databases.In:Proc of the ACM SIGMOD Int'lConf on Management of Data.New York:ACM Press,1996.73-84
  • 6[6]S Kantabutra,A L Couch.Parallel k-means clustering algorithm on nows.NECTEC Technical Journal,2000,1(6):243-247
  • 7[7]H Prodio,H Lawrence.Scalable clustering:A distributed approach.The IEEE Int'lConf on Fuzzy Systems,Budapest,Hungary,2004
  • 8[8]D K Tasoulis,M N Vrahatis.Unsupervised distributed clustering.The IASTED Int'lConf on the Parallel and Distributed Computing and Networks,Innsbruck,2004
  • 9[9]E Januzaj,H P Kriegel,M Pfeifle.DBDC:Density based distributed clustering.In:Proc of the 9th Int'lConf on Extending Database Technology.Berlin:Springer,2004.88-105
  • 10[10]http://www.ics.uci.edu/~mlearn/databases/iris/,1998

共引文献8

同被引文献76

引证文献6

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部