期刊文献+

Rav-tree:一种有效支持反向近似近邻查询的索引结构 被引量:2

Rav-tree:An Efficient Index Structure for Reverse Approximate Nearest Neighbor Query
下载PDF
导出
摘要 空间数据库的索引结构是实现有效数据查询的前提和基础。空间数据反向近似近邻查询是空间查询的一个新方向,它避免了精确查询中过多的距离计算,从而能够在效率与准确性上取得平衡。提出的Rav-tree不同于基于启发式规则的索引结构,首先利用局部近似,然后根据Voronoi cell区域和估计圆的方法实现近似近邻查询,并利用过滤结果和分域查询得到初步的候选集,最终通过反向近似近邻查询(RANNQuery)算法得到RANN集,并完整地给出基于Rav-tree的ANN查询算法和RANN查询算法。实验结果表明,Rav-tree对RANN等查询具有较好的查询效率和查全率。 Index structure is the precondition and foundation in the efficient data query. The reverse approximate nearest neighbor query is a new issue in the area of spatial query. This approach can avoid much metric distance computation in exact query,and acquire a better tradeoff between the efficiency and precision. The Rav-tree is different from the index structures based on the heuristic rules. It applies partial Voronoi cell approximation with estimated circles to filter the results of approximate nearest neighbor query. The final result set of RANN is reached through the algorithms of ANN query and Division query with primary candidates. The experimental results indicate that the Ray-tree is an effective index structure and has better efficiency and recall for the query such as RANN query.
出处 《计算机科学》 CSCD 北大核心 2010年第1期158-162,共5页 Computer Science
基金 国家自然科学基金项目(60673136) 黑龙江省自然科学基金项目(F200601)资助
关键词 索引结构 反向近似近邻 分域查询 区域估计 Index structure, Reverse approximate nearest neighbor, Division query, Region estimation
  • 相关文献

参考文献8

  • 1Clarkson K L. Nearest Neighbor Queries in Metric Spaees[J].Discrete & Computational Geometry, 1999,22 (1) : 63-93.
  • 2郝忠孝,刘永山.空间对象的反最近邻查询[J].计算机科学,2005,32(11):115-118. 被引量:11
  • 3Achtert E, Bohm C, Kroger P. Efficient reverse k-nearest neighbor search in arbitrary metric spaces[C]//Proc. ACM SIGMOD ICMD. Chicago, Illinois, USA,June, 2006: 27-29.
  • 4Corral A,Manolopoulos Y, Theodoridis Y, et al. Algorithms for processing K-closest-pair queries in spatial databases[J]. Data Knowl. Eng,2004,49(1) :67-104.
  • 5徐红波,郝忠孝.一种基于Z曲线近似k-最近对查询算法[J].计算机研究与发展,2008,45(2):310-317. 被引量:5
  • 6Lin King-Ip, Yang Congjun. The ANN-tree: An Index for efficient approximate nearest neighbor search[C]//Proc, the 7th International DASFAA. Hong Kong, China, April 2001: 174-181.
  • 7Sack J R,Urrutia J. Voronoi Diagrams[M]. Handbook on Computational Geometry. Ottawa: Elsevier Science, 2000 : 201-290.
  • 8李博涵,郝忠孝.一种基于聚类分析的R^*树结点重叠判定算法[J].计算机研究与发展,2008,45(12):2154-2161. 被引量:3

二级参考文献23

  • 1Beckmann N, Kriegel H P, Schneider R, et al. The R*- tree: An efficient and robust access method for points and rectangles [C] //Proc of ACM SIGMOD Int Conf on Management of Data. New York: ACM, 1990: 322-331.
  • 2Katayama N, Satoh S. The SR-tree.. An index structure for high dimensional nearest neighbor queries [C] //Proc of ACM SIGMOD1997. New York: ACM, 1997:369-380.
  • 3Han Jiawei, Kamber M. Data Mining: Concepts and Techniques [M]. 2nd ed. Beijing: China Machine Press, 2006 : 383-466.
  • 4Brakatsoulas S, Pfoser D, Theodoridis Y. Revisiting R-tree construction principles [C] //Proc of the 6th ADBIS. Berlin: Springer, 2002:149-162.
  • 5Zhang Donghui, Xia Tian. A novel improvement to the R* - tree spatial index using gain/loss metrics [C]//Proc of ACMGIS. Berlin: Springer, 2004:204-213.
  • 6Li Chen, Chang Edward. Clustering for approximate similarity search in high-dimensional spaces [J]. IEEE Trans on Knowledge and Data Engineering, 2002, 14(4): 792-808.
  • 7Jagadish H V, Chin Ooi Beng, Tan Kian-Lee, et al. iDistance: An adaptive B+-tree based indexing method for nearest neighbor search [J]. ACM Trans on Database Systems, 2005, 30(2): 364-397.
  • 8Kom F, Muthukrishnan S. Influence Sets Based on Reverse Nearest Neighbor Queries. In: Weidong Chen, Jeffrey F. Naughton and Philip A. Bernstein,eds. Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of Data, Dallas, Texas, USA, 2000. New York,NY,USA,ACM Press,2000. 201-212.
  • 9Yang C, Lin K I. An Index Structure for Efficient Reverse Nearest Neighbor Queries. In: George Kollios, ed. Proc. of the IEEE Intl. Conf. onData Engineering, Heidelberg, Germany, 2001.Washington, IEEE Computer Society, 2001. 485-492.
  • 10Berchtold S, Bohm C. On Optimizing Nearest Neighbor Queries in High-Dimensional Dats Spaces. In: Jan Van den Bussche, Victor Vianu,eds Database Theory-ICDT 2001, 8th Intl. Conf London,UK,2001. Springer,2001.435-449.

共引文献16

同被引文献24

  • 1Clarkson K L.Nearest Neighbor Queries in Metric Spaces[J].Discrete & Computational Geometry,1999,22(1):63-93.
  • 2Guttman A. R-trees: A Dynamic Index Structure for Spatial Searching [C].Inl~oc. of the ACM SIGMOD Intl. Conf. on Management of Data, Boston, Massachusetts,1984: 47-57.
  • 3Beekmann N, Kriegel H P, Schneider R. The R*-tree: An Efficient and Robust Access Method for Points and Rectangles[C]//Seattle, Washington:Proc of the ACM SIGMOD Intl Conf on Management of Data,1990: 322-331.
  • 4Sellis T K, Roussopoulos N, Faloutsos C. The R+-tree: A Dynamic Index for Multidimensional Objects [C]//Brighton, England:Proc of the 13th lntl Conf on Very Large Databases,VLDB,1987:507-518.
  • 5刘彬.空间数据库中基于R一树的连续最近邻查询方法研究[D].哈尔滨:哈尔滨理工大学,2009.
  • 6Sack J R, Urrutia J.Voronoi Diagrams[M].Handbook on Computational Geometry.Ottawa Elsevier Science,2000:201-290.
  • 7Smid M. Dynamic Rectangular Point Location with an Application to the Closest Pair Problem [C].Tapei,Taiwan:The 2nd International Symposium on Algorithms and Computation,1991: 364-374.
  • 8Shewehuk J R.Delaunay Refinement Mesh Generation[D].Pittsburgh Pennsylvania,USA:Carnegie Mellon University,1997.
  • 9Kom F,Muthukrishnan S.Influence sets based on reverse nearest neighbor queries[C]//Proceedings of the 2000 ACM SIGMOD Interna- ional Conference on Management of Data.Dallas: ACM Press,2000:201-212.
  • 10Achtert E,Bohm C,Kroger P.Efficient reverse k-nearest neighbor search in arbitrary metric spaces[C].Proc.ACM SIGMODICMD.Chica- go,Illinois,USA,June,2006:27-29.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部