期刊文献+

一种基于粗糙遗传算法的缩放模式双聚类分析方法 被引量:3

Biclustering Method for Detecting Scaling Patterns with Genetic Rough Algorithm
下载PDF
导出
摘要 研究了基因表达数据的缩放模式发现问题,给出了一种缩放模式双聚类评价函数,并提出了一种基于粗糙遗传算法的双聚类分析方法。该方法先以启发式算法及随机方法生成初始种群,再基于粗糙遗传算法对种群进行迭代,以达到全局优化的目的。在Yeast数据集上进行的测试表明,该算法能对启发式算法的结果进行良好的修正。生物显著性分析表明所发现的缩放模式双聚类具有生物学意义。 This paper addressed the problem of detecting scaling patterns in gene expression data. A mean ratio residue as a merit function for Scaling patterns was presented. Based on the mean ratio residue a biclustering method was proposed under genetic rough framework. In this method, initial population is generated by Heuristic Rough Biclustering Algorithm as well as random choice. And then it adjust the seeds with Genetic Rough Algorithm. We tested this method on yeast expression data. The experimental results show that the Genetic Rough based method well improves the performance of heuristic algorithm and biclusters found on the yeast data are biologically significant using online GO Term Finder.
出处 《计算机科学》 CSCD 北大核心 2010年第1期225-228,共4页 Computer Science
基金 国家自然科学基金项目(60475019 60775036) 高等学校博士学科点专项科研基金(20060247039)资助
关键词 双聚类分析 缩放模式 粗糙遗传算法 基因表达数据 Biclustering,Scaling patterns,Genetic rough algorithm,Gene expression data
  • 相关文献

参考文献11

  • 1Cheng Y, Church G M. Biclustering of expression data[C]// Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology(ISMB 2000).La Jolla, CA, August 2000:93-103.
  • 2Pawlak Z. Rough Sets[J]. International Journal of Information and Computer Sciences, 1982,11 : 145-172.
  • 3Wang H, Wang W, Yang J, et al. Clustering by pattern similarity in large data sets[C]//Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data. 2002:394-405.
  • 4Bleuler S,Prelic A,Zitzler E. An EA framework for bielustering of gene expression data[C]//Proceedings of Congress on Evolutionary Computation. 2004 : 166-173.
  • 5Chakraborty A, Maka H. Biclustering of gene expression data using genetic algorithm[C]//Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology(CIBCB '05). 2005:1-8.
  • 6Divina F, Aguilar-Ruiz J S. Biclustering of expression data with evolutionary computation[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(5): 590-602.
  • 7Mitra S, Banka H. Multi - objective evolutionary biclustering of gene expression data[J]. Pattern Recognition, 2006, 39 (12) : 2464-2477.
  • 8Cho H, Dhillon I S. Co - clustering of human cancer microarrays using minimum sum-squared residue co-clustering[J].IEEE/ ACM Transactions on Computational Biology and Bioinformatics(2007 accepted,DOI 10. 11.9/TCBB. 2007. 70268).
  • 9Lazzeroni L C, Owen A. Plaid models for gene expression data[J].Statist Sinica, 2002,12(1 ):61-86.
  • 10Yang J, Wang H, Wang W, et al. Enhanced biclustering on ex - pression data[C]//Proceedings of the 3rd IEEE Conference on Bioinformatics and Bioengineering (BIBE 2003). 2003:321-327.

同被引文献24

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部