期刊文献+

采用预测策略的Earley算法 被引量:4

Earley Algorithm Using Prediction Strategies
下载PDF
导出
摘要 在自然语言处理中,句法分析主要有基于统计的方法和基于规则的方法。Earley算法是一种基于规则的方法,可以分析任意上下文无关文法(CFG),而不需要对文法进行修改。详细分析了Earley算法的特点。在通常的Earley算法中增加了多种预测机制,这些预测机制借鉴了LL,LR以及SLR等确定性分析算法的一些思想,并对这几种不同的预测机制及其组合在相同条件下进行了中文句法分析实验。结果显示,引入这些预测机制通常可以减少产生项目的数量,从而节省存储空间,减少运行时间。 There are two kinds of parsing algorithms in nature language processing:one based on statistics and the other based on grammar rules. Earley algorithm is based on grammar rules. It can parse any context free grammar (CFG) without changing the grammar. This paper used several predictive strategies in Eartey algorithm. These strategies come from LL,SLR and LR algorithms. Experiments were made for these strategies and their combinations. Results indicate that these strategies can usually reduce number of items and make parsing faster.
出处 《计算机科学》 CSCD 北大核心 2010年第1期229-232,共4页 Computer Science
基金 国家863计划(2006AA01Z142) 国家自然科学基金项目(60873128)资助
关键词 上下文无关文法 句法分析 Earley算法 Context free grammar,Parsing,Earley algorithm
  • 相关文献

参考文献9

  • 1孟遥,李生,赵铁军,杨沐昀.基于统计的句法分析技术综述[J].计算机科学,2003,30(9):54-58. 被引量:7
  • 2李珩,朱靖波,姚天顺.基于SVM的中文组块分析[J].中文信息学报,2004,18(2):1-7. 被引量:50
  • 3李素建,刘群,杨志峰.基于最大熵模型的组块分析[J].计算机学报,2003,26(12):1722-1727. 被引量:58
  • 4Sun Guang-lu, Huang Chang-ning, Wang Xiao-long, et al. Chinese Chunking Based on Maximum Entropy Markov Models [J]. Computational Linguistics and Chinese Language Processing, 2006,11(2): 115-136.
  • 5Aho A V, Johnson S C. LR Parsing [J]. Computing Survey , 1974,6(2) :99-124.
  • 6Graham A L, Harrison M A,Ruzzo W L. An improved context-free recognizer[J]. ACM T PROGR LANG SYS, 1980:415-462.
  • 7Tornita M. An Efficient Augmented-Context-free Parsing Algorithm[J]. Computational Linguistics, 1987,13( 1 ) : 31-46.
  • 8Earley J. An efficient context-free parsing algorithm[J]. Comunications ACM, 1970,13(2):94-102.
  • 9Aho A V, Lain M S, Sathi R, et al. Compilers Principles Techniques and Tools (2nd) [ M]. New York: Addison-Wesley, 1986 : 191-300.

二级参考文献41

  • 1VapnikN 著 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 2[1]Erik F, Tjong Kim Sang,Buchholz S. Introduction to the CoNLL-2000 Shared Task: Chunking. In: Proceedings of CoNLL2000 and LLL-2000, Lisbon, Portugal, 2000. 127~132
  • 3[2]Steven A. Parsing by Chunks. In: Berwick, Abney, Tenny eds. Principle-Based Parsing: Kluwer Academic Publishers,1991. 257~278
  • 4[5]Ratnaparkhi A. A maximum entropy model for part-of-speech tagging. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 1996
  • 5[6]Ratnaparkhi A. A simple introduction to maximum entropy models for natural language processing. Institute for Research in Cognitive Science, University of Pennsylvania : Technical Report 9708, 1997
  • 6[7]Berger A, Pietra S D, Pietra V D. A maximum entropy approach to natural language processing. Computational Linguistics, 1996,22(1):39~71
  • 7[8]Skut, Wojciech, Thorsten Brants. A maximum entropy partial parser for unrestricted text. In:Proceedings of the 6th Workshop on Very Large Corpora, Montreal, Canada, 1998. 143~151
  • 8[10]Abney S. Part-of-speech tagging and partial parsing. In:Church K, Young S, Bloothooft G eds. Corpus-Based Methods in Language and Speech, An ELSNET volume, Dordrecht:Kluwer Academic Publishers, 1996. 119~136
  • 9[11]Church K W. A stochastic parts program and noun phrase parser for unrestricted text. In:Proceedings of the 2nd Conference on Applied Natural Language Processing, Texas, USA, 1988.136~143
  • 10[12]Ramshaw L A, Marcus M P. Text chunking using transformation-based learning. In: Proceedings of ACL Third Workshop on Very Large Corpora, Cambridge, USA, 1995. 82~94

共引文献95

同被引文献18

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部