期刊文献+

具有路径平滑和信息动态更新的蚁群算法 被引量:2

Ant Colony Optimization Algorithm with Path Smoothing and Dynamic Pheromone Updating
下载PDF
导出
摘要 蚁群算法具有很强的寻优能力,但仍存在搜索时间过长、易于停滞等问题。针对这些不足,提出了一种具有路径平滑和信息动态更新的蚁群算法。新算法引入了路径平滑概念,加强了对蚁群前期搜索的引导,扩大了蚁群后期搜索空间;同时,通过动态调节信息素挥发因子,使得路径间信息素浓度差异不会增长过快,有效地避免了算法陷入局部解。实验结果表明,具有路径平滑和信息动态更新的蚁群算法明显优于基本蚁群算法。 Ant colony optimization is a new heuristic algorithm which has been proven a successful technique for combinatorial optimization problems,but it still has some shortcomings such as stagnation behavior, needing much time and premature convergence. A new algorithm based on path smoothing and dynamic pheromone updating was proposed for overcoming those shortcomings. By path smoothing, in the early convergence phase, ants will search towards the path with shorter distance;ants will more constructe pheromone in the later convergence phase. By dynamic pheromone updating,algorithm can avoid being trapped into local optimum. The experimental results show that the algorithm presented in this paper has more effective than classical ant colony algorithm.
出处 《计算机科学》 CSCD 北大核心 2010年第1期233-235,共3页 Computer Science
基金 国家自然科学基金(60573159)资助
关键词 蚁群算法 路径平滑 信息动态更新 Ant colony optimization, Path smoothing,Dynamic pheromone updating
  • 相关文献

参考文献10

  • 1Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]//Proc 1st European Conf Artificial Life. Pans, France:Elsevier, 1991 : 134-142.
  • 2Colorni A, Dorigo M, Maniezzo V. An investigation of some properties of an ant algorithm[C]//Proc PPSN' 92. London, 1992:509-520.
  • 3Colorni A, Dorigo M, Maniezzo V, et al. Ant system for job-shop scheduling[J]. Belgian Journal of Operations Research and Statistic Computing Science, 1994,34(1) : 39-53.
  • 4Dorigo M,Stutzle T. Ant Colony Optimization[M]. Cambridge, MA: MIT Press, 2004.
  • 5Dorigo M.Special section on ant colony optimization[J]. IEEE Trans. on Evolutionary Computation, 2002,6 (4) : 317-319.
  • 6肖鹏,李茂军,张军平,叶涛.单亲遗传算法及其在物流配送系统中的应用[J].系统工程,2000,18(1):64-66. 被引量:99
  • 7Dorigo M, Maniezzo V, ColorniA. Ant system: Optimization by a colony of cooperating agents[J].IEEE Trans on SMC, 1996,26 (1):28-41.
  • 8吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306
  • 9陈崚,沈洁,秦玲,陈宏建.基于分布均匀度的自适应蚁群算法[J].软件学报,2003,14(8):1379-1387. 被引量:111
  • 10Gu Jun, Huang Xiao fei. Efficient Local Search with Search Space Smoothing: A Case Study of the Traveling Salesman Problem(TSP)[J].IEEE Trans. on Systems, Man and Cybernetics, 1994,24(5) : 728-735.

二级参考文献7

共引文献462

同被引文献14

  • 1章春芳,陈崚,陈娟.求解频率分配问题的自适应的多种群蚁群算法.[J].小型微型计算机系统,2006,27(5):837-841. 被引量:11
  • 2Philippsen R,Siegwart R.An interpolated dynamic navigation function. Proceedings of the IEEE International Con-ference on Robotics and Automation . 2005
  • 3Boissonnat J D,CerezoA,Leblond J.Shortest paths of bounded curvature in the plane. Proceedings of the IEEE International Conference on Robotics and Automation [ C ] . 1992
  • 4Saska M,Macas M,Preucil L.Robot path planningusing particle swarm optimization of Ferguson Splines. Emerging Technologies and Factory Automa-tion 2006 . 2006
  • 5Gemeinder M,Gerke M.GA-based path planning for mobile robot systems employing an active search algorithm. . 2003
  • 6Stentz A.Optimal and efficient path planning for partially-known environments. Proceedings of the IEEE International Conference on Robotics and Automation . 1994
  • 7Nelson W.Continuous-curvature paths for autonomous ve-hicles. Proceedings of the1989IEEE International Conference on Robotics and Automation . 1989
  • 8谢民,高利新.蚁群算法在最优路径规划中的应用[J].计算机工程与应用,2008,44(8):245-248. 被引量:19
  • 9曲道奎,杜振军,徐殿国,徐方.移动机器人路径规划方法研究[J].机器人,2008,30(2):97-101. 被引量:98
  • 10喻学才,张田文.多维背包问题的一个蚁群优化算法[J].计算机学报,2008,31(5):810-819. 被引量:29

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部