期刊文献+

红外图像统计阈值分割方法 被引量:21

Statistical Thresholding Method for Infrared Images
下载PDF
导出
摘要 经典的统计阈值方法采用某种形式的类方差和作为阈值选择的准则,未考虑实际图像的特性,对目标和背景具有相似统计分布的图像的分割效果不甚理想。为此,利用阈值分割后两个类的标准偏差定义了一个新的阈值选择准则,并通过最小化此准则选择出最佳分割阈值。通过一系列实际图像上的实验结果表明,与现有的几种经典阈值分割方法相比,本方法分割图像的效果更好,尤其是对红外图像分割的效果更为明显。 Classic statistical thresholding methods take class variance sum of some form as criterions for threshold selection. They don't take special characteristic of practical images into account and fail to get ideal results when segmenting a kind of image having similar statistical distributions in the object and background. In order to eliminate the above limitation of classic statistical approaches,a novel statistical criterion was defined by utilizing standard deviations of two thresholded classes, and the optimal threshold was determined by minimizing it. Experiments on a variety of infrared images and general real world images show that our method outperforms the existing classic thresholding methods in segmentation quality, especially for infrared images.
出处 《计算机科学》 CSCD 北大核心 2010年第1期282-286,298,共6页 Computer Science
基金 国家自然科学基金项目(60472061 60632050 90820004) 国家863项目(2006AA04Z238 006AA01Z119) 福建省教育厅科技项目(JB07170) 福建省省属高校科技项目(2008F5045) 福建省科技厅项目(2007F5083) 闽江学院科技启动项目(YKQ07001)资助
关键词 图像分割 阈值方法 统计理论 标准偏差 Image segmentation,Thresholding, Statistical theory,Standard deviation
  • 相关文献

参考文献16

  • 1Bazi Y, Bruzaone L, Melgani F. Image thresholding based on the EM algorithm and the generalized Gaussian distribution[J]. Pattern Recognition, 2007,40(2) : 619-634.
  • 2杨有,尚晋.一种政府资源档案图像的二值化方法[J].计算机科学,2007,34(3):227-229. 被引量:5
  • 3Qiao Y, Hu Q, Qian G, et al. Thresholding based on variance and intensity contrast[J]. Pattern Recognition, 2007,40 (2) :596-608.
  • 4Sang N, Li H,Peng W, et al. Knowledge-based adaptive thresholding segmentation of digital subtraction angiography images[J].Image and Vision Computing,2007,25(8): 1263-1270.
  • 5Wang S,Chung F,Xiong F. A novel image thresholding method based on parzen window estimate [J]. Pattern Recognition, 2008,41(1): 117-129.
  • 6Otsu N. A threshold selection method from gray level histogram [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9(1) :62-66.
  • 7Sahoo P K, Soltani S, Wong A K C. A survey of thresholding techniques[J]. Computer Vision, Graphics, and Image Processing, 1988,41 (2) : 233 -260.
  • 8Hou Z, Hu Q, Nowinski W L. On minimum variance threshol - ding[J].Pattern Recognition Letters, 2006,27 (14) : 1732-1743.
  • 9Pun T. A new method for grey-level picture thresholding using entropy of histogram[J]. Signal Processing, 1980,2 (3) : 223-227.
  • 10Kapur J N,Sahoo P K,Wong A K C. A new method for greylevel picture thresholding using the entropy of the histogram [J]. Computer Vision,Graphics, and Image Processing, 1985,29 (3) :273-285.

二级参考文献3

  • 1Nagy G.Twenty years of document image analysis in PAMI[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(1):38~62
  • 2Otsu N.A threshold selection method from gray-level histogram[J].IEEE Trans on System Man and Cybernet,1989 (8):62~66
  • 3Bernsen J.Dynamic thresholding of gray-level images[A].In:Proc.of 8^th International Conference Pattern Recognition.Paris,France.IEEE Computer Society Press,1986.1251~1255

共引文献4

同被引文献205

引证文献21

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部