期刊文献+

滑动数据窗口驱动动的的贝叶斯-高斯网络及其在非线性系统辨识中的应用 被引量:1

Sliding-data-window-driven Bayesian-Gaussian neural network and its application to modeling of nonlinear system
下载PDF
导出
摘要 工业控制场合中,需要获取非线性被控对象的结构特性,而系统动态响应的数据直接从外部特征上反映了非线性系统结构关系.为了充分利用非线性动态系统响应过程中的数据,本文提出了一种基于滑动数据窗口(sliding data window)的贝叶斯-高斯神经网络(SW-BGNN)模型.该模型将数据融合于网络模型结构中,借助于贝叶斯推理和高斯假设,利用滑动窗口数据,实现非线性动态系统的辨识和预测.整个SW-BGNN本身需要确定的参数很少,因此运算的时间很短,适合于非线性动态系统的在线辨识.将SW-BGNN应用于几个非线性动态系统的辨识和预测,仿真试验结果表明了SW--BGNN模型的有效性. In industrial control, the structure of the nonlinear dynamic system is determined by using the dynamic data of the controlled object. In order to make full use of the data obtained from the dynamic response process of the nonlinear dynamic system, a novel Bayesian-Gaussian neural network based on sliding-window(SW-BGNN) is proposed which combines the Bayesian reasoning formula with the Gaussian assumption. Based on the data in the sliding window, the operation process of SW-BGNN reasonably predicts the output of the nonlinear dynamic system in terms of a small number of parameters of the SW-BGNN. The SW-BGNN has limited computation time which makes it suitable to onlinear identification applications. Examples of identification and prediction of nonlinear dynamic system are presented.Simulation results show the effectiveness of the SW-BGNN method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第12期1435-1438,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(60704024 60772107) 江苏省普通高校自然科学研究计划资助项目(07KJD510109)
关键词 滑动窗口 贝叶斯-高斯神经网络 非线性 辨识 sliding window Bayesian-Gaussian neural network nonlinear identification
  • 相关文献

参考文献5

二级参考文献33

共引文献57

同被引文献8

  • 1Yu Wen, LiXiaoou. On-line fuzzy modeling via clustering and support vector machines [ J ]. Journal of Information Sciences, 2008, 78(22) :4 264-4 279.
  • 2Kadir Kavaklioglu. Modeling and prediction of Turkey's electricity consumption using support vector regression [J]. Applied Energy, 2011, 88(1): 368-375.
  • 3Ye Haiwen, Nicolai Rainer, Reh Lothar. A Bayesian-Gaussian neural network and its application in process engineering[ J]. Chemical Engineering and Process, 1998, 38: 439-449.
  • 4Chan K Y, Kwong C K, Tsim Y C. Modeling and optimization of fluid dispensing for electronic packaging using neural fuzzy networks and genetic algorithms[ J ]. Engineering Applications of Artificial Intelligence, 2010, 23 (1) :18-26.
  • 5Niu Ben, Zhu Yunlong, He Xiaoxian, et al. A multi-swarm optimizer based fuzzy modeling approach for dynamic systems pro- cessing[ J ]. Neurocomputing, 2008, 71 (7-9) : 1 436-1 448.
  • 6Majhi Babita, Pandaa G. Development of efficient identification scheme for nonlinear dynamic systems using swarm intelligence techniques [ J ]. Expert Systems With Applications, 2010, 37 ( 1 ) :556-566.
  • 7Fang Yanjun, Liu Yijian. Design of automated control system based on improved E. Coli foraging optimization[ C ]//IEEE In- ternational Conference on Automation and Logistics. Piscataway: IEEE Press, 2008: 238-243.
  • 8张川燕,王子介.基于BP神经网络的热舒适性指标计算[J].南京师范大学学报(工程技术版),2009,9(1):44-48. 被引量:8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部