摘要
干扰温度估计是认知无线电技术中的关键问题之一。多窗口频谱估计结合奇异值分解技术提供了一种估算射频环境中干扰温度功率谱的有效途径。提出基于神经网络的多窗口频谱估计结合奇异值分解的算法,与传统算法相比,该算法提高了干扰温度估计值的可靠性和准确度,降低了计算复杂度,同时能够适应复杂电磁环境下对干扰温度的实时性估值的要求。
Interference temperature estimation is one of the most crucial problems in cognitive radio. The technology of multiplication windows frequency spectrum estimating integrating the singular-value decomposition(SVD)offers an efficient method which estimates interference temperature in radio frequency environment. In this paper, a new method is proposed which is based on neural network techniques, which complexity of convention arithmetic is predigested and nicety of interference temperature estimation is improved. At the same time, the paper provides a good method for estimating the real time interference temperature in complex radio frequency environment.
出处
《电波科学学报》
EI
CSCD
北大核心
2009年第6期1154-1157,1176,共5页
Chinese Journal of Radio Science
基金
国家高科技发展计划项目(2008AA01A322)