期刊文献+

基于神经网络的多窗口频谱估计方法研究 被引量:3

Multi-window spectral estimation based on neural network techniques
下载PDF
导出
摘要 干扰温度估计是认知无线电技术中的关键问题之一。多窗口频谱估计结合奇异值分解技术提供了一种估算射频环境中干扰温度功率谱的有效途径。提出基于神经网络的多窗口频谱估计结合奇异值分解的算法,与传统算法相比,该算法提高了干扰温度估计值的可靠性和准确度,降低了计算复杂度,同时能够适应复杂电磁环境下对干扰温度的实时性估值的要求。 Interference temperature estimation is one of the most crucial problems in cognitive radio. The technology of multiplication windows frequency spectrum estimating integrating the singular-value decomposition(SVD)offers an efficient method which estimates interference temperature in radio frequency environment. In this paper, a new method is proposed which is based on neural network techniques, which complexity of convention arithmetic is predigested and nicety of interference temperature estimation is improved. At the same time, the paper provides a good method for estimating the real time interference temperature in complex radio frequency environment.
出处 《电波科学学报》 EI CSCD 北大核心 2009年第6期1154-1157,1176,共5页 Chinese Journal of Radio Science
基金 国家高科技发展计划项目(2008AA01A322)
关键词 神经网络 认知无线电 干扰温度 奇异值分解 neural network cognitive radio interference temperature SVD
  • 相关文献

参考文献11

  • 1HORNE W D. Adaptive Spectrum Access: Using the Full Spectrum Space [C]// Proc. of the International Symposium on Advanced Radio Technologies, 2003.
  • 2MITOLA III J AND MAGUIRE G Q. Cognitive radio: Making software radios more personal[J]. IEEE Pets. Commun. , 1999, 6(4): 13-18.
  • 3FCC ET Docket No 03--237 Notice of inquiry and notice of proposed Rulemaking [R]. 2003.
  • 4HAYKIN S. Communication Systems[M]. 4th ed. New York: Wiley, 2001: 61.
  • 5BELTRAMI E. Sulle funzioni bilineari, Giomale di Mathematiche ad Uso Studenti Delle Uninersita[M]. 1873, 11: 98- 106.
  • 6An English translation by D Boley is available as University of Minnesota, Department of Computer Science, Technical Report, 1990: 90-37.
  • 7WANG L X AND MENDEL J M. Structured Trainable Networks for Matrix Algebra[C]//Proceedings of the International Joint Conference on Neural Networks, San Diego, CA, 1990, (2): 125-32.
  • 8STRANG G. Introduction to Linear Algebra [M]. Wellesley, MA: Wellesley--Cambridge Press, 1993.
  • 9DATTA B N. Numerical Linear Algebra and Applications[M]. Pacific Grove, CA:Brooks/Cole, 1995.
  • 10吕铁军,王河,肖先赐.利用改进遗传算法的DOA估计[J].电波科学学报,2000,15(4):429-433. 被引量:15

二级参考文献2

  • 1刘勇,非数值并行算法.遗传算法,1998年
  • 2张乃饶,神经网络与模糊控制,1996年

共引文献14

同被引文献19

  • 1刘勤,张雯.认知无线电中的频谱空洞检测技术[J].中兴通讯技术,2007,13(3):12-14. 被引量:3
  • 2ALGHAMDI O A, ABU RGHCFF M A. Perform- ance evaluation of cognitive radio spectrum sensing u- sing multitaper-singular value decomposition [ C]// Proceedings of IEEE Crowncom, 2009: 1-6.
  • 3BOUROUJENY B F. Filter bank spectrum sensing for cognitive radios[J]. IEEE Trans. on Signal Process, 2008, 56(5): 1801-1811.
  • 4HAYKIN S. The multitaper method for accurate spec- trum sensing in cognitive radio environments [C]// Conference Record of the Forty-First Asilomar Confer- ence on Signals, Systems and Computers, 2007: 1058- 6393.
  • 5PERCIVAL D B, WALDEN A T. Spectral Analysis for Physical Applications[M]. London, U. K.: Cam- bridge University Press, 1993.
  • 6KNIGHT K. Mathematical statistics[M]. Chapman& Hall: CRC, 2000.
  • 7CHIANG T W. Optimal detector for multitaper spec- trum estimator in cognitive radios[C]//Proceedings of Global Telecommunications Conference, 2009: 1-5.
  • 8TSUNG-HAN Y, RODRIGUEZ-PARERA S, MARK- OVIC D, et al. Cognitive radio wideband spectrum sensing using multitap windowing and power detection with threshold adaptation [C]// IEEE International Conference on Communications. Cape Town, 2010: 1- 5.
  • 9STEVENSON C R, CORDEIRO C, SOFER E. Func- tional Requirements for 802.22 WRAN Standard[S]. IEEEStd. 802.22-05/0007r46, 2005.
  • 10罗凡·毖于认知无线电频谱感知技术的研究[D].成都:成都理工大学,2009.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部